[trunk] add test_tile_encoder test and function related
[openjpeg.git] / libopenjpeg / mct.c
1 /*
2  * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
3  * Copyright (c) 2002-2007, Professor Benoit Macq
4  * Copyright (c) 2001-2003, David Janssens
5  * Copyright (c) 2002-2003, Yannick Verschueren
6  * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
7  * Copyright (c) 2005, Herve Drolon, FreeImage Team
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #ifdef __SSE__
33 #include <xmmintrin.h>
34 #endif
35
36 #include "opj_includes.h"
37
38 /* <summary> */
39 /* This table contains the norms of the basis function of the reversible MCT. */
40 /* </summary> */
41 static const double mct_norms[3] = { 1.732, .8292, .8292 };
42
43 /* <summary> */
44 /* This table contains the norms of the basis function of the irreversible MCT. */
45 /* </summary> */
46 static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 };
47
48 const OPJ_FLOAT64 * get_mct_norms ()
49 {
50         return mct_norms;
51 }
52
53 const OPJ_FLOAT64 * get_mct_norms_real ()
54 {
55         return mct_norms_real;
56 }
57
58 /* <summary> */
59 /* Foward reversible MCT. */
60 /* </summary> */
61 void mct_encode(
62                 int* restrict c0,
63                 int* restrict c1,
64                 int* restrict c2,
65                 int n)
66 {
67         int i;
68         for(i = 0; i < n; ++i) {
69                 int r = c0[i];
70                 int g = c1[i];
71                 int b = c2[i];
72                 int y = (r + (g * 2) + b) >> 2;
73                 int u = b - g;
74                 int v = r - g;
75                 c0[i] = y;
76                 c1[i] = u;
77                 c2[i] = v;
78         }
79 }
80
81 /* <summary> */
82 /* Inverse reversible MCT. */
83 /* </summary> */
84 void mct_decode(
85                 int* restrict c0,
86                 int* restrict c1, 
87                 int* restrict c2, 
88                 int n)
89 {
90         int i;
91         for (i = 0; i < n; ++i) {
92                 int y = c0[i];
93                 int u = c1[i];
94                 int v = c2[i];
95                 int g = y - ((u + v) >> 2);
96                 int r = v + g;
97                 int b = u + g;
98                 c0[i] = r;
99                 c1[i] = g;
100                 c2[i] = b;
101         }
102 }
103
104 /* <summary> */
105 /* Get norm of basis function of reversible MCT. */
106 /* </summary> */
107 double mct_getnorm(int compno) {
108         return mct_norms[compno];
109 }
110
111 /* <summary> */
112 /* Foward irreversible MCT. */
113 /* </summary> */
114 void mct_encode_real(
115                 int* restrict c0,
116                 int* restrict c1,
117                 int* restrict c2,
118                 int n)
119 {
120         int i;
121         for(i = 0; i < n; ++i) {
122                 int r = c0[i];
123                 int g = c1[i];
124                 int b = c2[i];
125                 int y =  fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934);
126                 int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096);
127                 int v =  fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666);
128                 c0[i] = y;
129                 c1[i] = u;
130                 c2[i] = v;
131         }
132 }
133
134 /* <summary> */
135 /* Inverse irreversible MCT. */
136 /* </summary> */
137 void mct_decode_real(
138                 float* restrict c0,
139                 float* restrict c1,
140                 float* restrict c2,
141                 int n)
142 {
143         int i;
144 #ifdef __SSE__
145         __m128 vrv, vgu, vgv, vbu;
146         vrv = _mm_set1_ps(1.402f);
147         vgu = _mm_set1_ps(0.34413f);
148         vgv = _mm_set1_ps(0.71414f);
149         vbu = _mm_set1_ps(1.772f);
150         for (i = 0; i < (n >> 3); ++i) {
151                 __m128 vy, vu, vv;
152                 __m128 vr, vg, vb;
153
154                 vy = _mm_load_ps(c0);
155                 vu = _mm_load_ps(c1);
156                 vv = _mm_load_ps(c2);
157                 vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
158                 vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
159                 vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
160                 _mm_store_ps(c0, vr);
161                 _mm_store_ps(c1, vg);
162                 _mm_store_ps(c2, vb);
163                 c0 += 4;
164                 c1 += 4;
165                 c2 += 4;
166
167                 vy = _mm_load_ps(c0);
168                 vu = _mm_load_ps(c1);
169                 vv = _mm_load_ps(c2);
170                 vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
171                 vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
172                 vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
173                 _mm_store_ps(c0, vr);
174                 _mm_store_ps(c1, vg);
175                 _mm_store_ps(c2, vb);
176                 c0 += 4;
177                 c1 += 4;
178                 c2 += 4;
179         }
180         n &= 7;
181 #endif
182         for(i = 0; i < n; ++i) {
183                 float y = c0[i];
184                 float u = c1[i];
185                 float v = c2[i];
186                 float r = y + (v * 1.402f);
187                 float g = y - (u * 0.34413f) - (v * (0.71414f));
188                 float b = y + (u * 1.772f);
189                 c0[i] = r;
190                 c1[i] = g;
191                 c2[i] = b;
192         }
193 }
194
195 /* <summary> */
196 /* Get norm of basis function of irreversible MCT. */
197 /* </summary> */
198 double mct_getnorm_real(int compno) {
199         return mct_norms_real[compno];
200 }
201
202
203 opj_bool mct_encode_custom(
204                                            // MCT data
205                                            OPJ_BYTE * pCodingdata,
206                                            // size of components
207                                            OPJ_UINT32 n,
208                                            // components
209                                            OPJ_BYTE ** pData,
210                                            // nb of components (i.e. size of pData)
211                                            OPJ_UINT32 pNbComp,
212                                            // tells if the data is signed
213                                            OPJ_UINT32 isSigned)
214 {
215         OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
216         OPJ_UINT32 i;
217         OPJ_UINT32 j;
218         OPJ_UINT32 k;
219         OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
220         OPJ_INT32 * lCurrentData = 00;
221         OPJ_INT32 * lCurrentMatrix = 00;
222         OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
223         OPJ_UINT32 lMultiplicator = 1 << 13;
224         OPJ_INT32 * lMctPtr;
225
226         lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32));
227         if (! lCurrentData) {
228                 return OPJ_FALSE;
229         }
230
231         lCurrentMatrix = lCurrentData + pNbComp;
232
233         for (i =0;i<lNbMatCoeff;++i) {
234                 lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * lMultiplicator);
235         }
236
237         for (i = 0; i < n; ++i)  {
238                 lMctPtr = lCurrentMatrix;
239                 for (j=0;j<pNbComp;++j) {
240                         lCurrentData[j] = (*(lData[j]));
241                 }
242
243                 for (j=0;j<pNbComp;++j) {
244                         *(lData[j]) = 0;
245                         for (k=0;k<pNbComp;++k) {
246                                 *(lData[j]) += fix_mul(*lMctPtr, lCurrentData[k]);
247                                 ++lMctPtr;
248                         }
249
250                         ++lData[j];
251                 }
252         }
253
254         opj_free(lCurrentData);
255
256         return OPJ_TRUE;
257 }
258
259 opj_bool mct_decode_custom(
260                                            /* MCT data */
261                                            OPJ_BYTE * pDecodingData,
262                                            /* size of components */
263                                            OPJ_UINT32 n,
264                                            /* components */
265                                            OPJ_BYTE ** pData,
266                                            /* nb of components (i.e. size of pData) */
267                                            OPJ_UINT32 pNbComp,
268                                            /* tells if the data is signed */
269                                            OPJ_UINT32 isSigned)
270 {
271         OPJ_FLOAT32 * lMct;
272         OPJ_UINT32 i;
273         OPJ_UINT32 j;
274         OPJ_UINT32 k;
275
276         OPJ_FLOAT32 * lCurrentData = 00;
277         OPJ_FLOAT32 * lCurrentResult = 00;
278         OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
279
280         lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
281         if
282                 (! lCurrentData)
283         {
284                 return OPJ_FALSE;
285         }
286         lCurrentResult = lCurrentData + pNbComp;
287
288         for
289                 (i = 0; i < n; ++i)
290         {
291                 lMct = (OPJ_FLOAT32 *) pDecodingData;
292                 for
293                         (j=0;j<pNbComp;++j)
294                 {
295                         lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
296                 }
297                 for
298                         (j=0;j<pNbComp;++j)
299                 {
300                         lCurrentResult[j] = 0;
301                         for
302                                 (k=0;k<pNbComp;++k)
303                         {
304                                 lCurrentResult[j] += *(lMct++) * lCurrentData[k];
305                         }
306                         *(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
307                 }
308         }
309         opj_free(lCurrentData);
310         return OPJ_TRUE;
311 }
312
313 void opj_calculate_norms(       OPJ_FLOAT64 * pNorms,
314                                                         OPJ_UINT32 pNbComps,
315                                                         OPJ_FLOAT32 * pMatrix)
316 {
317         OPJ_UINT32 i,j,lIndex;
318         OPJ_FLOAT32 lCurrentValue;
319         OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
320         OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
321
322         for     (i=0;i<pNbComps;++i) {
323                 lNorms[i] = 0;
324                 lIndex = i;
325
326                 for     (j=0;j<pNbComps;++j) {
327                         lCurrentValue = lMatrix[lIndex];
328                         lIndex += pNbComps;
329                         lNorms[i] += lCurrentValue * lCurrentValue;
330                 }
331                 lNorms[i] = sqrt(lNorms[i]);
332         }
333 }