replace fixed-point linear interpolation with double-based version, thereby removing...
[ardour.git] / libs / ardour / interpolation.cc
1 #include <stdint.h>
2 #include <cstdio>
3
4 #include "ardour/interpolation.h"
5
6 using namespace ARDOUR;
7
8 nframes_t
9 FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
10 {
11         // the idea behind phase is that when the speed is not 1.0, we have to 
12         // interpolate between samples and then we have to store where we thought we were. 
13         // rather than being at sample N or N+1, we were at N+0.8792922
14         // so the "phase" element, if you want to think about this way, 
15         // varies from 0 to 1, representing the "offset" between samples
16         uint64_t        phase = last_phase[channel];
17         
18         // acceleration
19         int64_t  phi_delta;
20
21         // phi = fixed point speed
22         if (phi != target_phi) {
23                 phi_delta = ((int64_t)(target_phi - phi)) / nframes;
24         } else {
25                 phi_delta = 0;
26         }
27         
28         // index in the input buffers
29         nframes_t   i = 0;
30
31         for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
32                 i = phase >> 24;
33                 Sample fractional_phase_part = (phase & fractional_part_mask) / binary_scaling_factor;
34                 
35                 if (input && output) {
36                         // Linearly interpolate into the output buffer
37                         output[outsample] = 
38                                 input[i] * (1.0f - fractional_phase_part) +
39                                 input[i+1] * fractional_phase_part;
40                 }
41                 
42                 phase += phi + phi_delta;
43         }
44
45         last_phase[channel] = (phase & fractional_part_mask);
46         
47         // playback distance
48         return i;
49 }
50
51 void 
52 FixedPointLinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
53 {
54         last_phase.push_back (0);
55 }
56
57 void 
58 FixedPointLinearInterpolation::remove_channel_from ()
59 {
60         last_phase.pop_back ();
61 }
62
63 void
64 FixedPointLinearInterpolation::reset() 
65 {
66         for (size_t i = 0; i <= last_phase.size(); i++) {
67                 last_phase[i] = 0;
68         }
69 }
70
71
72 nframes_t
73 LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
74 {
75         // index in the input buffers
76         nframes_t   i = 0;
77         
78         double acceleration;
79         double distance = 0.0;
80         
81         if (_speed != _target_speed) {
82                 acceleration = _target_speed - _speed;
83         } else {
84                 acceleration = 0.0;
85         }
86         
87         distance = phase[channel];
88         //printf("processing channel: %d\n", channel);
89         //printf("phase before: %lf\n", phase[channel]);
90         for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
91                 i = floor(distance);
92                 Sample fractional_phase_part = distance - i;
93                 if (fractional_phase_part >= 1.0) {
94                         fractional_phase_part -= 1.0;
95                         i++;
96                 }
97                 //printf("I: %u, distance: %lf, fractional_phase_part: %lf\n", i, distance, fractional_phase_part);
98                 
99                 if (input && output) {
100                 // Linearly interpolate into the output buffer
101                         output[outsample] = 
102                                 input[i] * (1.0f - fractional_phase_part) +
103                                 input[i+1] * fractional_phase_part;
104                 }
105                 //printf("distance before: %lf\n", distance);
106                 distance += _speed + acceleration;
107                 //printf("distance after: %lf, _speed: %lf\n", distance, _speed);
108         }
109         
110         //printf("before assignment: i: %d, distance: %lf\n", i, distance);
111         i = floor(distance);
112         //printf("after assignment: i: %d, distance: %16lf\n", i, distance);
113         phase[channel] = distance - floor(distance);
114         //printf("speed: %16lf, i after: %d, distance after: %16lf, phase after: %16lf\n", _speed, i, distance, phase[channel]);
115         
116         return i;
117 }
118
119 void 
120 LinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
121 {
122         phase.push_back (0.0);
123 }
124
125 void 
126 LinearInterpolation::remove_channel_from ()
127 {
128         phase.pop_back ();
129 }
130
131
132 void
133 LinearInterpolation::reset() 
134 {
135         for (size_t i = 0; i <= phase.size(); i++) {
136                 phase[i] = 0.0;
137         }
138 }
139
140 LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0)
141 {
142         _speed = 1.0;
143 }
144
145 LibSamplerateInterpolation::~LibSamplerateInterpolation() 
146 {
147         for (size_t i = 0; i < state.size(); i++) {
148                 state[i] = src_delete (state[i]);
149         }
150 }
151
152 void
153 LibSamplerateInterpolation::set_speed (double new_speed)
154
155         _speed = new_speed; 
156         for (size_t i = 0; i < state.size(); i++) {
157                 src_set_ratio (state[i], 1.0/_speed);
158         }
159 }
160
161 void
162 LibSamplerateInterpolation::reset_state ()
163 {
164         printf("INTERPOLATION: reset_state()\n");
165         for (size_t i = 0; i < state.size(); i++) {
166                 if (state[i]) {
167                         src_reset (state[i]);
168                 } else {
169                         state[i] = src_new (SRC_SINC_FASTEST, 1, &error);
170                 }
171         }
172 }
173
174 void
175 LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) 
176 {
177         SRC_DATA* newdata = new SRC_DATA;
178         
179         /* Set up sample rate converter info. */
180         newdata->end_of_input = 0 ; 
181
182         newdata->input_frames  = input_buffer_size;
183         newdata->output_frames = output_buffer_size;
184
185         newdata->input_frames_used = 0 ;
186         newdata->output_frames_gen = 0 ;
187
188         newdata->src_ratio = 1.0/_speed;
189         
190         data.push_back (newdata);
191         state.push_back (0);
192         
193         reset_state ();
194 }
195
196 void
197 LibSamplerateInterpolation::remove_channel_from () 
198 {
199         SRC_DATA* d = data.back ();
200         delete d;
201         data.pop_back ();
202         if (state.back ()) {
203                 src_delete (state.back ());
204         }
205         state.pop_back ();
206         reset_state ();
207 }
208
209 nframes_t
210 LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
211 {       
212         if (!data.size ()) {
213                 printf ("ERROR: trying to interpolate with no channels\n");
214                 return 0;
215         }
216         
217         data[channel]->data_in     = input;
218         data[channel]->data_out   = output;
219         
220         data[channel]->input_frames  = nframes * _speed;
221         data[channel]->output_frames = nframes;
222         data[channel]->src_ratio         = 1.0/_speed; 
223
224         if ((error = src_process (state[channel], data[channel]))) {    
225                 printf ("\nError : %s\n\n", src_strerror (error));
226                 exit (1);
227         }
228         
229         //printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used);
230         
231         return data[channel]->input_frames_used;
232 }