Revert new meter types (postponed until after 3.3 release)
[ardour.git] / libs / ardour / meter.cc
1 /*
2     Copyright (C) 2006 Paul Davis
3
4     This program is free software; you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by the Free
6     Software Foundation; either version 2 of the License, or (at your option)
7     any later version.
8
9     This program is distributed in the hope that it will be useful, but WITHOUT
10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License along
15     with this program; if not, write to the Free Software Foundation, Inc.,
16     675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19 #include <algorithm>
20 #include <cmath>
21
22 #include "pbd/compose.h"
23
24 #include "ardour/audio_buffer.h"
25 #include "ardour/buffer_set.h"
26 #include "ardour/dB.h"
27 #include "ardour/meter.h"
28 #include "ardour/midi_buffer.h"
29 #include "ardour/session.h"
30 #include "ardour/rc_configuration.h"
31 #include "ardour/runtime_functions.h"
32
33 using namespace std;
34
35 using namespace ARDOUR;
36
37 PBD::Signal0<void> Metering::Meter;
38
39 PeakMeter::PeakMeter (Session& s, const std::string& name)
40     : Processor (s, string_compose ("meter-%1", name))
41 {
42         Kmeterdsp::init(s.nominal_frame_rate());
43 }
44
45 PeakMeter::~PeakMeter ()
46 {
47         while (_kmeter.size() > 0) {
48                 delete (_kmeter.back());
49                 _kmeter.pop_back();
50         }
51 }
52
53
54 /** Get peaks from @a bufs
55  * Input acceptance is lenient - the first n buffers from @a bufs will
56  * be metered, where n was set by the last call to setup(), excess meters will
57  * be set to 0.
58  *
59  * (runs in jack realtime context)
60  */
61 void
62 PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
63 {
64         if (!_active && !_pending_active) {
65                 return;
66         }
67
68         // cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
69
70         const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
71         const uint32_t n_midi  = min (current_meters.n_midi(), bufs.count().n_midi());
72
73         uint32_t n = 0;
74
75         // Meter MIDI in to the first n_midi peaks
76         for (uint32_t i = 0; i < n_midi; ++i, ++n) {
77                 float val = 0.0f;
78                 MidiBuffer& buf (bufs.get_midi(i));
79                 
80                 for (MidiBuffer::iterator e = buf.begin(); e != buf.end(); ++e) {
81                         const Evoral::MIDIEvent<framepos_t> ev(*e, false);
82                         if (ev.is_note_on()) {
83                                 const float this_vel = ev.buffer()[2] / 127.0;
84                                 if (this_vel > val) {
85                                         val = this_vel;
86                                 }
87                         } else {
88                                 val += 1.0 / bufs.get_midi(n).capacity();
89                                 if (val > 1.0) {
90                                         val = 1.0;
91                                 }
92                         }
93                 }
94                 _peak_signal[n] = max (val, _peak_signal[n]);
95         }
96
97         // Meter audio in to the rest of the peaks
98         for (uint32_t i = 0; i < n_audio; ++i, ++n) {
99                 _peak_signal[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_signal[n]);
100                 if (_meter_type & MeterKrms) {
101                         _kmeter[i]->process(bufs.get_audio(i).data(), nframes);
102                 }
103         }
104
105         // Zero any excess peaks
106         for (uint32_t i = n; i < _peak_signal.size(); ++i) {
107                 _peak_signal[i] = 0.0f;
108         }
109
110         _active = _pending_active;
111 }
112
113 void
114 PeakMeter::reset ()
115 {
116         for (size_t i = 0; i < _peak_signal.size(); ++i) {
117                 _peak_signal[i] = 0.0f;
118         }
119 }
120
121 void
122 PeakMeter::reset_max ()
123 {
124         for (size_t i = 0; i < _max_peak_power.size(); ++i) {
125                 _max_peak_power[i] = -INFINITY;
126                 _max_peak_signal[i] = 0;
127         }
128 }
129
130 bool
131 PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
132 {
133         out = in;
134         return true;
135 }
136
137 bool
138 PeakMeter::configure_io (ChanCount in, ChanCount out)
139 {
140         if (out != in) { // always 1:1
141                 return false;
142         }
143
144         current_meters = in;
145
146         reset_max_channels (in);
147
148         return Processor::configure_io (in, out);
149 }
150
151 void
152 PeakMeter::reflect_inputs (const ChanCount& in)
153 {
154         current_meters = in;
155
156         const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
157         const size_t n_midi  = min (_peak_signal.size(), (size_t) current_meters.n_midi());
158         const size_t n_audio = current_meters.n_audio();
159
160         for (size_t n = 0; n < limit; ++n) {
161                 if (n < n_midi) {
162                         _visible_peak_power[n] = 0;
163                 } else {
164                         _visible_peak_power[n] = -INFINITY;
165                 }
166         }
167
168         for (size_t n = 0; n < n_audio; ++n) {
169                 _kmeter[n]->reset();
170         }
171
172         reset_max();
173
174         ConfigurationChanged (in, in); /* EMIT SIGNAL */
175 }
176
177 void
178 PeakMeter::reset_max_channels (const ChanCount& chn)
179 {
180         uint32_t const limit = chn.n_total();
181         const size_t n_audio = chn.n_audio();
182
183         while (_peak_signal.size() > limit) {
184                 _peak_signal.pop_back();
185                 _visible_peak_power.pop_back();
186                 _max_peak_signal.pop_back();
187                 _max_peak_power.pop_back();
188         }
189
190         while (_peak_signal.size() < limit) {
191                 _peak_signal.push_back(0);
192                 _visible_peak_power.push_back(minus_infinity());
193                 _max_peak_signal.push_back(0);
194                 _max_peak_power.push_back(minus_infinity());
195         }
196
197         assert(_peak_signal.size() == limit);
198         assert(_visible_peak_power.size() == limit);
199         assert(_max_peak_signal.size() == limit);
200         assert(_max_peak_power.size() == limit);
201
202         /* alloc/free other audio-only meter types. */
203         while (_kmeter.size() > n_audio) {
204                 delete (_kmeter.back());
205                 _kmeter.pop_back();
206         }
207         while (_kmeter.size() < n_audio) {
208                 _kmeter.push_back(new Kmeterdsp());
209         }
210         assert(_kmeter.size() == n_audio);
211 }
212
213 /** To be driven by the Meter signal from IO.
214  * Caller MUST hold its own processor_lock to prevent reconfiguration
215  * of meter size during this call.
216  */
217
218 void
219 PeakMeter::meter ()
220 {
221         if (!_active) {
222                 return;
223         }
224
225         assert(_visible_peak_power.size() == _peak_signal.size());
226
227         const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
228         const size_t n_midi  = min (_peak_signal.size(), (size_t) current_meters.n_midi());
229
230         for (size_t n = 0; n < limit; ++n) {
231
232                 /* grab peak since last read */
233
234                 float new_peak = _peak_signal[n]; /* XXX we should use atomic exchange from here ... */
235                 _peak_signal[n] = 0;              /* ... to here */
236
237                 if (n < n_midi) {
238                         _max_peak_power[n] = -INFINITY; // std::max (new_peak, _max_peak_power[n]); // XXX
239                         _max_peak_signal[n] = 0;
240                         if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
241                                 ;
242                         } else {
243                                 /* empirical WRT to falloff times , 0.01f ^= 100 Hz update rate */
244                                 new_peak = _visible_peak_power[n] - sqrt(_visible_peak_power[n] * Config->get_meter_falloff() * 0.01f * 0.0002f);
245                                 if (new_peak < (1.0 / 512.0)) new_peak = 0;
246                         }
247                         _visible_peak_power[n] = new_peak;
248                         continue;
249                 }
250
251                 /* AUDIO */
252
253                 /* compute new visible value using falloff */
254
255                 _max_peak_signal[n] = std::max(new_peak, _max_peak_signal[n]);
256
257                 if (new_peak > 0.0) {
258                         new_peak = accurate_coefficient_to_dB (new_peak);
259                 } else {
260                         new_peak = minus_infinity();
261                 }
262
263                 /* update max peak */
264
265                 _max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
266
267                 if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
268                         _visible_peak_power[n] = new_peak;
269                 } else {
270                         // do falloff
271                         new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
272                         _visible_peak_power[n] = std::max (new_peak, -INFINITY);
273                 }
274         }
275 }
276
277 float
278 PeakMeter::meter_level(uint32_t n, MeterType type) {
279         switch (type) {
280                 case MeterKrms:
281                         {
282                                 const uint32_t n_midi  = current_meters.n_midi();
283                                 if ((n - n_midi) < _kmeter.size() && (n - n_midi) >= 0) {
284 #if 0
285                                         return fast_coefficient_to_dB (_kmeter[n-n_midi]->read());
286 #else
287                                         return accurate_coefficient_to_dB (_kmeter[n-n_midi]->read());
288 #endif
289                                 }
290                                 return minus_infinity();
291                         }
292                 case MeterPeak:
293                         return peak_power(n);
294                 case MeterMaxSignal:
295                         if (n < _max_peak_signal.size()) {
296                                 return _max_peak_signal[n];
297                         } else {
298                                 return minus_infinity();
299                         }
300                 default:
301                 case MeterMaxPeak:
302                         if (n < _max_peak_power.size()) {
303                                 return _max_peak_power[n];
304                         } else {
305                                 return minus_infinity();
306                         }
307         }
308 }
309
310 void
311 PeakMeter::set_type(MeterType t)
312 {
313         if (t == _meter_type) {
314                 return;
315         }
316
317         _meter_type = t;
318
319         if (t & MeterKrms) {
320                 const size_t n_audio = current_meters.n_audio();
321                 for (size_t n = 0; n < n_audio; ++n) {
322                         _kmeter[n]->reset();
323                 }
324         }
325         TypeChanged(t);
326 }
327
328 XMLNode&
329 PeakMeter::state (bool full_state)
330 {
331         XMLNode& node (Processor::state (full_state));
332         node.add_property("type", "meter");
333         return node;
334 }