improved/new DEBUG_TRACE output
[ardour.git] / libs / evoral / Curve.cc
1 /*
2  * Copyright (C) 2008-2013 Paul Davis <paul@linuxaudiosystems.com>
3  * Copyright (C) 2008-2016 David Robillard <d@drobilla.net>
4  * Copyright (C) 2010-2012 Carl Hetherington <carl@carlh.net>
5  * Copyright (C) 2012-2018 Robin Gareus <robin@gareus.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21
22 #include <iostream>
23 #include <float.h>
24 #include <cmath>
25 #include <climits>
26 #include <cfloat>
27 #include <cmath>
28 #include <vector>
29
30 #include <glibmm/threads.h>
31
32 #include "pbd/control_math.h"
33
34 #include "evoral/Curve.h"
35 #include "evoral/ControlList.h"
36
37 using namespace std;
38 using namespace sigc;
39
40 namespace Evoral {
41
42
43 Curve::Curve (const ControlList& cl)
44         : _dirty (true)
45         , _list (cl)
46 {
47 }
48
49 void
50 Curve::solve () const
51 {
52         uint32_t npoints;
53
54         if (!_dirty) {
55                 return;
56         }
57
58         if ((npoints = _list.events().size()) > 2) {
59
60                 /* Compute coefficients needed to efficiently compute a constrained spline
61                    curve. See "Constrained Cubic Spline Interpolation" by CJC Kruger
62                    (www.korf.co.uk/spline.pdf) for more details.
63                 */
64
65                 vector<double> x(npoints);
66                 vector<double> y(npoints);
67                 uint32_t i;
68                 ControlList::EventList::const_iterator xx;
69
70                 for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) {
71                         x[i] = (double) (*xx)->when;
72                         y[i] = (double) (*xx)->value;
73                 }
74
75                 double lp0, lp1, fpone;
76
77                 lp0 = (x[1] - x[0])/(y[1] - y[0]);
78                 lp1 = (x[2] - x[1])/(y[2] - y[1]);
79
80                 if (lp0*lp1 < 0) {
81                         fpone = 0;
82                 } else {
83                         fpone = 2 / (lp1 + lp0);
84                 }
85
86                 double fplast = 0;
87
88                 for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) {
89
90                         double xdelta;   /* gcc is wrong about possible uninitialized use */
91                         double xdelta2;  /* ditto */
92                         double ydelta;   /* ditto */
93                         double fppL, fppR;
94                         double fpi;
95
96                         if (i > 0) {
97                                 xdelta = x[i] - x[i-1];
98                                 xdelta2 = xdelta * xdelta;
99                                 ydelta = y[i] - y[i-1];
100                         }
101
102                         /* compute (constrained) first derivatives */
103
104                         if (i == 0) {
105
106                                 /* first segment */
107
108                                 fplast = ((3 * (y[1] - y[0]) / (2 * (x[1] - x[0]))) - (fpone * 0.5));
109
110                                 /* we don't store coefficients for i = 0 */
111
112                                 continue;
113
114                         } else if (i == npoints - 1) {
115
116                                 /* last segment */
117
118                                 fpi = ((3 * ydelta) / (2 * xdelta)) - (fplast * 0.5);
119
120                         } else {
121
122                                 /* all other segments */
123
124                                 double slope_before = ((x[i+1] - x[i]) / (y[i+1] - y[i]));
125                                 double slope_after = (xdelta / ydelta);
126
127                                 if (slope_after * slope_before < 0.0) {
128                                         /* slope changed sign */
129                                         fpi = 0.0;
130                                 } else {
131                                         fpi = 2 / (slope_before + slope_after);
132                                 }
133                         }
134
135                         /* compute second derivative for either side of control point `i' */
136
137                         fppL = (((-2 * (fpi + (2 * fplast))) / (xdelta))) +
138                                 ((6 * ydelta) / xdelta2);
139
140                         fppR = (2 * ((2 * fpi) + fplast) / xdelta) -
141                                 ((6 * ydelta) / xdelta2);
142
143                         /* compute polynomial coefficients */
144
145                         double b, c, d;
146
147                         d = (fppR - fppL) / (6 * xdelta);
148                         c = ((x[i] * fppL) - (x[i-1] * fppR))/(2 * xdelta);
149
150                         double xim12, xim13;
151                         double xi2, xi3;
152
153                         xim12 = x[i-1] * x[i-1];  /* "x[i-1] squared" */
154                         xim13 = xim12 * x[i-1];   /* "x[i-1] cubed" */
155                         xi2 = x[i] * x[i];        /* "x[i] squared" */
156                         xi3 = xi2 * x[i];         /* "x[i] cubed" */
157
158                         b = (ydelta - (c * (xi2 - xim12)) - (d * (xi3 - xim13))) / xdelta;
159
160                         /* store */
161
162                         (*xx)->create_coeffs();
163                         (*xx)->coeff[0] = y[i-1] - (b * x[i-1]) - (c * xim12) - (d * xim13);
164                         (*xx)->coeff[1] = b;
165                         (*xx)->coeff[2] = c;
166                         (*xx)->coeff[3] = d;
167
168                         fplast = fpi;
169                 }
170
171         }
172
173         _dirty = false;
174 }
175
176 bool
177 Curve::rt_safe_get_vector (double x0, double x1, float *vec, int32_t veclen) const
178 {
179         Glib::Threads::RWLock::ReaderLock lm(_list.lock(), Glib::Threads::TRY_LOCK);
180
181         if (!lm.locked()) {
182                 return false;
183         } else {
184                 _get_vector (x0, x1, vec, veclen);
185                 return true;
186         }
187 }
188
189 void
190 Curve::get_vector (double x0, double x1, float *vec, int32_t veclen) const
191 {
192         Glib::Threads::RWLock::ReaderLock lm(_list.lock());
193         _get_vector (x0, x1, vec, veclen);
194 }
195
196 void
197 Curve::_get_vector (double x0, double x1, float *vec, int32_t veclen) const
198 {
199         double rx, lx, hx, max_x, min_x;
200         int32_t i;
201         int32_t original_veclen;
202         int32_t npoints;
203
204         if (veclen == 0) {
205                 return;
206         }
207
208         if ((npoints = _list.events().size()) == 0) {
209                 /* no events in list, so just fill the entire array with the default value */
210                 for (int32_t i = 0; i < veclen; ++i) {
211                         vec[i] = _list.descriptor().normal;
212                 }
213                 return;
214         }
215
216         if (npoints == 1) {
217                 for (int32_t i = 0; i < veclen; ++i) {
218                         vec[i] = _list.events().front()->value;
219                 }
220                 return;
221         }
222
223         /* events is now known not to be empty */
224
225         max_x = _list.events().back()->when;
226         min_x = _list.events().front()->when;
227
228         if (x0 > max_x) {
229                 /* totally past the end - just fill the entire array with the final value */
230                 for (int32_t i = 0; i < veclen; ++i) {
231                         vec[i] = _list.events().back()->value;
232                 }
233                 return;
234         }
235
236         if (x1 < min_x) {
237                 /* totally before the first event - fill the entire array with
238                  * the initial value.
239                  */
240                 for (int32_t i = 0; i < veclen; ++i) {
241                         vec[i] = _list.events().front()->value;
242                 }
243                 return;
244         }
245
246         original_veclen = veclen;
247
248         if (x0 < min_x) {
249
250                 /* fill some beginning section of the array with the
251                    initial (used to be default) value
252                 */
253
254                 double frac = (min_x - x0) / (x1 - x0);
255                 int64_t fill_len = (int64_t) floor (veclen * frac);
256
257                 fill_len = min (fill_len, (int64_t)veclen);
258
259                 for (i = 0; i < fill_len; ++i) {
260                         vec[i] = _list.events().front()->value;
261                 }
262
263                 veclen -= fill_len;
264                 vec += fill_len;
265         }
266
267         if (veclen && x1 > max_x) {
268
269                 /* fill some end section of the array with the default or final value */
270
271                 double frac = (x1 - max_x) / (x1 - x0);
272                 int64_t fill_len = (int64_t) floor (original_veclen * frac);
273                 float val;
274
275                 fill_len = min (fill_len, (int64_t)veclen);
276                 val = _list.events().back()->value;
277
278                 for (i = veclen - fill_len; i < veclen; ++i) {
279                         vec[i] = val;
280                 }
281
282                 veclen -= fill_len;
283         }
284
285         lx = max (min_x, x0);
286         hx = min (max_x, x1);
287
288         if (npoints == 2) {
289
290                 const double lpos = _list.events().front()->when;
291                 const double lval = _list.events().front()->value;
292                 const double upos = _list.events().back()->when;
293                 const double uval = _list.events().back()->value;
294
295                 /* dx that we are using */
296                 if (veclen > 1) {
297                         const double dx_num = hx - lx;
298                         const double dx_den = veclen - 1;
299                         const double lower = _list.descriptor().lower;
300                         const double upper = _list.descriptor().upper;
301
302                         /* gradient of the line */
303                         const double m_num = uval - lval;
304                         const double m_den = upos - lpos;
305                         /* y intercept of the line */
306                         const double c = uval - (m_num * upos / m_den);
307
308                         switch (_list.interpolation()) {
309                                 case ControlList::Logarithmic:
310                                         for (int i = 0; i < veclen; ++i) {
311                                                 const double fraction = (lx - lpos + i * dx_num / dx_den) / m_den;
312                                                 vec[i] = interpolate_logarithmic (lval, uval, fraction, lower, upper);
313                                         }
314                                         break;
315                                 case ControlList::Exponential:
316                                         for (int i = 0; i < veclen; ++i) {
317                                                 const double fraction = (lx - lpos + i * dx_num / dx_den) / m_den;
318                                                 vec[i] = interpolate_gain (lval, uval, fraction, upper);
319                                         }
320                                         break;
321                                 case ControlList::Discrete:
322                                         // any discrete vector curves somewhere?
323                                         assert (0);
324                                 case ControlList::Curved:
325                                         /* no 2 point spline */
326                                         /* fallthrough */
327                                 default: // Linear:
328                                         for (int i = 0; i < veclen; ++i) {
329                                                 vec[i] = (lx * (m_num / m_den) + m_num * i * dx_num / (m_den * dx_den)) + c;
330                                         }
331                                         break;
332                         }
333                 } else {
334                         double fraction = (lx - lpos) / (upos - lpos);
335                         switch (_list.interpolation()) {
336                                 case ControlList::Logarithmic:
337                                         vec[0] = interpolate_logarithmic (lval, uval, fraction, _list.descriptor().lower, _list.descriptor().upper);
338                                         break;
339                                 case ControlList::Exponential:
340                                         vec[0] = interpolate_gain (lval, uval, fraction, _list.descriptor().upper);
341                                         break;
342                                 case ControlList::Discrete:
343                                         // any discrete vector curves somewhere?
344                                         assert (0);
345                                 case ControlList::Curved:
346                                         /* no 2 point spline */
347                                         /* fallthrough */
348                                 default: // Linear:
349                                         vec[0] = interpolate_linear (lval, uval, fraction);
350                                         break;
351                         }
352                 }
353
354                 return;
355         }
356
357         if (_dirty) {
358                 solve ();
359         }
360
361         rx = lx;
362
363         double dx = 0;
364         if (veclen > 1) {
365                 dx = (hx - lx) / (veclen - 1);
366         }
367
368         for (i = 0; i < veclen; ++i, rx += dx) {
369                 vec[i] = multipoint_eval (rx);
370         }
371 }
372
373 double
374 Curve::multipoint_eval (double x) const
375 {
376         pair<ControlList::EventList::const_iterator,ControlList::EventList::const_iterator> range;
377
378         ControlList::LookupCache& lookup_cache = _list.lookup_cache();
379
380         if ((lookup_cache.left < 0) ||
381             ((lookup_cache.left > x) ||
382              (lookup_cache.range.first == _list.events().end()) ||
383              ((*lookup_cache.range.second)->when < x))) {
384
385                 ControlEvent cp (x, 0.0);
386
387                 lookup_cache.range = equal_range (_list.events().begin(), _list.events().end(), &cp, ControlList::time_comparator);
388         }
389
390         range = lookup_cache.range;
391
392         /* EITHER
393
394            a) x is an existing control point, so first == existing point, second == next point
395
396            OR
397
398            b) x is between control points, so range is empty (first == second, points to where
399                to insert x)
400
401         */
402
403         if (range.first == range.second) {
404
405                 /* x does not exist within the list as a control point */
406
407                 lookup_cache.left = x;
408
409                 if (range.first == _list.events().begin()) {
410                         /* we're before the first point */
411                         // return default_value;
412                         return _list.events().front()->value;
413                 }
414
415                 if (range.second == _list.events().end()) {
416                         /* we're after the last point */
417                         return _list.events().back()->value;
418                 }
419
420                 ControlEvent* after = (*range.second);
421                 range.second--;
422                 ControlEvent* before = (*range.second);
423
424                 double vdelta = after->value - before->value;
425
426                 if (vdelta == 0.0) {
427                         return before->value;
428                 }
429
430                 double tdelta = x - before->when;
431                 double trange = after->when - before->when;
432
433                 switch (_list.interpolation()) {
434                         case ControlList::Discrete:
435                                 return before->value;
436                         case ControlList::Logarithmic:
437                                 return interpolate_logarithmic (before->value, after->value, tdelta / trange, _list.descriptor().lower, _list.descriptor().upper);
438                         case ControlList::Exponential:
439                                 return interpolate_gain (before->value, after->value, tdelta / trange, _list.descriptor().upper);
440                         case ControlList::Curved:
441                                 if (after->coeff) {
442                                         ControlEvent* ev = after;
443                                         double x2 = x * x;
444                                         return ev->coeff[0] + (ev->coeff[1] * x) + (ev->coeff[2] * x2) + (ev->coeff[3] * x2 * x);
445                                 }
446                                 /* fallthrough */
447                         case ControlList::Linear:
448                                 return before->value + (vdelta * (tdelta / trange));
449                 }
450         }
451
452         /* x is a control point in the data */
453         /* invalidate the cached range because its not usable */
454         lookup_cache.left = -1;
455         return (*range.first)->value;
456 }
457
458 } // namespace Evoral