
RtAudio Reference Manual

May 2002

Contents

1 The RtAudio (p. 23) Tutorial 1

1.1 Introduction . 1

1.2 Getting Started . 2

1.3 Error Handling . 3

1.4 Probing Device Capabilities . 3

1.5 Device Settings . 5

1.6 Playback (blocking functionality) 6

1.7 Playback (callback functionality) 8

1.8 Recording . 10

1.9 Duplex Mode . 12

1.10 Summary of Methods . 14

1.11 Compiling . 15

1.12 OS Notes . 16

1.13 Acknowledgements . 17

2 RtAudio Compound Index 19

2.1 RtAudio Compound List . 19

3 RtAudio File Index 21

3.1 RtAudio File List . 21

4 RtAudio Class Documentation 23

4.1 RtAudio Class Reference . 23

4.2 RtAudio::RTAUDIO DEVICE Struct Reference 31

ii CONTENTS

4.3 RtError Class Reference . 33

5 RtAudio File Documentation 37

5.1 RtAudio.h File Reference . 37

5.2 tutorial.txt File Reference . 38

RtAudio by Gary P. Scavone, c© 2001-2002

Chapter 1

The RtAudio (p. 23) Tutorial

• Introduction (p. 1)
• Getting Started (p. 2)
• Error Handling (p. 3)
• Probing Device Capabilities (p. 3)
• Device Settings (p. 5)
• Playback (blocking functionality) (p. 6)
• Playback (callback functionality) (p. 8)
• Recording (p. 10)
• Duplex Mode (p. 12)
• Summary of Methods (p. 14)
• Compiling (p. 15)
• OS Notes (p. 16)
• Acknowledgements (p. 17)

1.1 Introduction

RtAudio (p. 23) is a C++ class which provides a common API (Application
Programming Interface) for realtime audio input/output across Linux (native
ALSA and OSS), SGI, and Windows operating systems. RtAudio (p. 23) sig-
nificantly simplifies the process of interacting with computer audio hardware.
It was designed with the following goals:

• object oriented C++ design
• simple, common API across all supported platforms
• single independent header and source file for easy inclusion in program-

ming projects (no libraries!)

2 The RtAudio (p. 23) Tutorial

• blocking functionality
• callback functionality
• extensive audio device parameter control
• audio device capability probing
• automatic internal conversion for data format, channel number compen-

sation, de-interleaving, and byte-swapping
• control over multiple audio streams and devices with a single instance

RtAudio (p. 23) incorporates the concept of audio streams, which represent
audio output (playback) and/or input (recording). Available audio devices and
their capabilities can be enumerated and then specified when opening a stream.
Multiple streams can run at the same time and, when allowed by the underlying
audio API, a single device can serve multiple streams.

The RtAudio (p. 23) API provides both blocking (synchronous) and callback
(asyncronous) functionality. Callbacks are typically used in conjunction with
graphical user interfaces (GUI). Blocking functionality is often necessary for
explicit control of multiple input/output stream synchronization or when audio
must be synchronized with other system events.

1.2 Getting Started

The first thing that must be done when using RtAudio (p. 23) is to create an
instance of the class. The default constructor RtAudio::RtAudio() (p. 25)
scans the underlying audio system to verify that at least one device is avail-
able. RtAudio (p. 23) often uses C++ exceptions to report errors, necessitating
try/catch blocks around most member functions. The following code example
demonstrates default object construction and destruction:

#include "RtAudio.h"

int main()

{

RtAudio *audio;

// Default RtAudio constructor

try {

audio = new RtAudio();

}

catch (RtError &error) {

// Handle the exception here

}

// Clean up

delete audio;

}

RtAudio by Gary P. Scavone, c© 2001-2002

1.3 Error Handling 3

Obviously, this example doesn’t demonstrate any of the real functionality of
RtAudio (p. 23). However, all uses of RtAudio (p. 23) must begin with a
constructor (either default or overloaded varieties) and must end with class
destruction. Further, it is necessary that all class methods which can throw a
C++ exception be called within a try/catch block.

1.3 Error Handling

RtAudio (p. 23) uses a C++ exception handler called RtError (p. 33), which
is declared and defined within the RtAudio (p. 23) class files. The RtError
(p. 33) class is quite simple but it does allow errors to be ”caught” by Rt-
Error::TYPE (p. 33). Almost all RtAudio (p. 23) methods can ”throw” an
RtError (p. 33), most typically if an invalid stream identifier is supplied to
a method or a driver error occurs. There are a number of cases within Rt-
Audio (p. 23) where warning messages may be displayed but an exception is
not thrown. There is a private RtAudio (p. 23) method, error(), which can be
modified to globally control how these messages are handled and reported.

1.4 Probing Device Capabilities

A programmer may wish to query the available audio device capabilities before
deciding which to use. The following example outlines how this can be done.

// probe.cpp

#include <iostream>

#include "RtAudio.h"

int main()

{

RtAudio *audio;

// Default RtAudio constructor

try {

audio = new RtAudio();

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

// Determine the number of devices available

int devices = audio->getDeviceCount();

// Scan through devices for various capabilities

RtAudio::RTAUDIO_DEVICE info;

for (int i=0; i<devices; i++) {

RtAudio by Gary P. Scavone, c© 2001-2002

4 The RtAudio (p. 23) Tutorial

try {

audio->getDeviceInfo(i, &info);

}

catch (RtError &error) {

error.printMessage();

break;

}

// Print, for example, the maximum number of output channels for each device

cout << "device = " << i;

cout << ": maximum output channels = " << info.maxOutputChannels << "\n";

}

// Clean up

delete audio;

return 0;

}

The RTAUDIO DEVICE structure is defined in RtAudio.h and provides a
variety of information useful in assessing the capabilities of a device:

typedef struct {

char name[128];

DEVICE_ID id[2]; // No value reported by getDeviceInfo().

bool probed; // true if the device probe was successful.

int maxOutputChannels;

int maxInputChannels;

int maxDuplexChannels;

int minOutputChannels;

int minInputChannels;

int minDuplexChannels;

bool hasDuplexSupport; // true if duplex supported

int nSampleRates; // Number of discrete rates, or -1 if range supported.

double sampleRates[MAX_SAMPLE_RATES]; // Supported sample rates, or {min, max} if range.

RTAUDIO_FORMAT nativeFormats;

} RTAUDIO_DEVICE;

The following data formats are defined and fully supported by RtAudio (p. 23):

typedef unsigned long RTAUDIO_FORMAT;

static const RTAUDIO_FORMAT RTAUDIO_SINT8; // Signed 8-bit integer

static const RTAUDIO_FORMAT RTAUDIO_SINT16; // Signed 16-bit integer

static const RTAUDIO_FORMAT RTAUDIO_SINT24; // Signed 24-bit integer

static const RTAUDIO_FORMAT RTAUDIO_SINT32; // Signed 32-bit integer

static const RTAUDIO_FORMAT RTAUDIO_FLOAT32; // 32-bit float

static const RTAUDIO_FORMAT RTAUDIO_FLOAT64; // 64-bit double

The nativeFormats member of the RtAudio::RTAUDIO DEVICE (p. 31)
structure is a bit mask of the above formats which are natively supported by the
device. However, RtAudio (p. 23) will automatically provide format conversion

RtAudio by Gary P. Scavone, c© 2001-2002

1.5 Device Settings 5

if a particular format is not natively supported. When the probed member of
the RTAUDIO DEVICE structure is false, the remaining structure members are
likely unknown and the device is probably unuseable.

In general, the user need not be concerned with the minimum channel values
reported in the RTAUDIO DEVICE structure. While some audio devices may
require a minimum channel value > 1, RtAudio (p. 23) will provide automatic
channel number compensation when the number of channels set by the user is
less than that required by the device. Channel compensation is NOT possible
when the number of channels set by the user is greater than that supported by
the device.

It should be noted that the capabilities reported by a device driver or underlying
audio API are not always accurate and/or may be dependent on a combination
of device settings.

1.5 Device Settings

The next step in using RtAudio (p. 23) is to open a stream with a particular
set of device settings.

#include "RtAudio.h"

int main()

{

int channels = 2;

int sample_rate = 44100;

int buffer_size = 256; // 256 sample frames

int n_buffers = 4; // number of internal buffers used by device

int device = 0; // 0 indicates the default or first available device

int stream; // our stream identifier

RtAudio *audio;

// Instantiate RtAudio and open a stream within a try/catch block

try {

audio = new RtAudio();

stream = audio->openStream(device, channels, 0, 0, RtAudio::RTAUDIO_FLOAT32,

sample_rate, &buffer_size, n_buffers);

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

// Clean up

delete audio;

return 0;

}

RtAudio by Gary P. Scavone, c© 2001-2002

6 The RtAudio (p. 23) Tutorial

The RtAudio::openStream() (p. 26) method attempts to open a stream with
a specified set of parameter values. When successful, a stream identifier is
returned. In this case, we attempt to open a playback stream on device 0 with
two channels, 32-bit floating point data, a sample rate of 44100 Hz, a frame
rate of 256 sample frames per read/write, and 4 internal device buffers. When
device = 0, RtAudio (p. 23) first attempts to open the default audio device
with the given parameters. If that attempt fails, an attempt is made to find a
device or set of devices which will meet the given parameters. If all attempts
are unsuccessful, an RtError (p. 33) is thrown. When a non-zero device value
is specified, an attempt is made to open that device only.

RtAudio (p. 23) provides four signed integer and two floating point data
formats which can be specified using the RtAudio::RTAUDIO FORMAT
(p. 25) parameter values mentioned earlier. If the opened device does not na-
tively support the given format, RtAudio (p. 23) will automatically perform
the necessary data format conversion.

The bufferSize parameter specifies the desired number of sample frames which
will be written to and/or read from a device per write/read operation. The
nBuffers parameter is used in setting the underlying device buffer parameters.
Both the bufferSize and nBuffers parameters can be used to control stream
latency though there is no guarantee that the passed values will be those used
by a device. In general, lower values for both parameters will produce less
latency but perhaps less robust performance. Both parameters can be specified
with values of zero, in which case the smallest allowable values will be used.
The bufferSize parameter is passed as a pointer and the actual value used by
the stream is set during the device setup procedure. bufferSize values should
be a power of two. Optimal and allowable buffer values tend to vary between
systems and devices. Check the OS Notes (p. 16) section for general guidelines.

As noted earlier, the device capabilities reported by a driver or underlying audio
API are not always accurate and/or may be dependent on a combination of
device settings. Because of this, RtAudio (p. 23) does not attempt to query a
device’s capabilities or use previously reported values when opening a device.
Instead, RtAudio (p. 23) simply attempts to set the given parameters on a
specified device and then checks whether the setup is successful or not.

1.6 Playback (blocking functionality)

Once the device is open for playback, there are only a few final steps necessary for
realtime audio output. We’ll first provide an example (blocking functionality)
and then discuss the details.

// playback.cpp

#include "RtAudio.h"

RtAudio by Gary P. Scavone, c© 2001-2002

1.6 Playback (blocking functionality) 7

int main()

{

int count;

int channels = 2;

int sample_rate = 44100;

int buffer_size = 256; // 256 sample frames

int n_buffers = 4; // number of internal buffers used by device

float *buffer;

int device = 0; // 0 indicates the default or first available device

int stream; // our stream identifier

RtAudio *audio;

// Open a stream during RtAudio instantiation

try {

audio = new RtAudio(&stream, device, channels, 0, 0, RtAudio::RTAUDIO_FLOAT32,

sample_rate, &buffer_size, n_buffers);

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

try {

// Get a pointer to the stream buffer

buffer = (float *) audio->getStreamBuffer(stream);

// Start the stream

audio->startStream(stream);

}

catch (RtError &error) {

error.printMessage();

goto cleanup;

}

// An example loop which runs for about 40000 sample frames

count = 0;

while (count < 40000) {

// Generate your samples and fill the buffer with buffer_size sample frames of data

...

// Trigger the output of the data buffer

try {

audio->tickStream(stream);

}

catch (RtError &error) {

error.printMessage();

goto cleanup;

}

count += buffer_size;

}

try {

// Stop and close the stream

RtAudio by Gary P. Scavone, c© 2001-2002

8 The RtAudio (p. 23) Tutorial

audio->stopStream(stream);

audio->closeStream(stream);

}

catch (RtError &error) {

error.printMessage();

}

cleanup:

delete audio;

return 0;

}

The first thing to notice in this example is that we attempt to open a stream
during class instantiation with an overloaded constructor. This constructor sim-
ply combines the functionality of the default constructor, used earlier, and the
RtAudio::openStream() (p. 26) method. Again, we have specified a device
value of 0, indicating that the default or first available device meeting the given
parameters should be used. The integer identifier of the opened stream is re-
turned via the stream pointer value. An attempt is made to open the stream
with the specified bufferSize value. However, it is possible that the device will
not accept this value, in which case the closest allowable size is used and re-
turned via the pointer value. The constructor can fail if no available devices
are found, or a memory allocation or device driver error occurs. Note that you
should not call the RtAudio (p. 23) destructor if an exception is thrown during
instantiation.

Because RtAudio (p. 23) can be used to simultaneously control more than a
single stream, it is necessary that the stream identifier be provided to nearly all
public methods. Assuming the constructor is successful, it is necessary to get
a pointer to the buffer, provided by RtAudio (p. 23), for use in feeding data
to/from the opened stream. Note that the user should NOT attempt to deallo-
cate the stream buffer memory ... memory management for the stream buffer
will be automatically controlled by RtAudio (p. 23). After starting the stream
with RtAudio::startStream() (p. 28), one simply fills that buffer, which is of
length equal to the returned bufferSize value, with interleaved audio data (in the
specified format) for playback. Finally, a call to the RtAudio::tickStream()
(p. 28) routine triggers a blocking write call for the stream.

In general, one should call the RtAudio::stopStream() (p. 29) and Rt-
Audio::closeStream() (p. 28) methods after finishing with a stream. However,
both methods will implicitly be called during object destruction if necessary.

1.7 Playback (callback functionality)

The primary difference in using RtAudio (p. 23) with callback functionality
involves the creation of a user-defined callback function. Here is an example

RtAudio by Gary P. Scavone, c© 2001-2002

1.7 Playback (callback functionality) 9

which produces a sawtooth waveform for playback.

#include <iostream>

#include "RtAudio.h"

// Two-channel sawtooth wave generator.

int sawtooth(char *buffer, int buffer_size, void *data)

{

int i, j;

double *my_buffer = (double *) buffer;

double *my_data = (double *) data;

// Write interleaved audio data.

for (i=0; i<buffer_size; i++) {

for (j=0; j<2; j++) {

*my_buffer++ = my_data[j];

my_data[j] += 0.005 * (j+1+(j*0.1));

if (my_data[j] >= 1.0) my_data[j] -= 2.0;

}

}

return 0;

}

int main()

{

int channels = 2;

int sample_rate = 44100;

int buffer_size = 256; // 256 sample frames

int n_buffers = 4; // number of internal buffers used by device

int device = 0; // 0 indicates the default or first available device

int stream; // our stream identifier

double data[2];

char input;

RtAudio *audio;

// Open a stream during RtAudio instantiation

try {

audio = new RtAudio(&stream, device, channels, 0, 0, RtAudio::RTAUDIO_FLOAT64,

sample_rate, &buffer_size, n_buffers);

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

try {

// Set the stream callback function

audio->setStreamCallback(stream, &sawtooth, (void *)data);

// Start the stream

audio->startStream(stream);

}

catch (RtError &error) {

RtAudio by Gary P. Scavone, c© 2001-2002

10 The RtAudio (p. 23) Tutorial

error.printMessage();

goto cleanup;

}

cout << "\nPlaying ... press <enter> to quit.\n";

cin.get(input);

try {

// Stop and close the stream

audio->stopStream(stream);

audio->closeStream(stream);

}

catch (RtError &error) {

error.printMessage();

}

cleanup:

delete audio;

return 0;

}

After opening the device in exactly the same way as the previous example (ex-
cept with a data format change), we must set our callback function for the stream
using RtAudio::setStreamCallback() (p. 27). This method will spawn a new
process (or thread) which automatically calls the callback function when more
data is needed. Note that the callback function is called only when the stream
is ”running” (between calls to the RtAudio::startStream() (p. 28) and Rt-
Audio::stopStream() (p. 29) methods). The last argument to RtAudio::set-
StreamCallback() (p. 27) is a pointer to arbitrary data that you wish to access
from within your callback function.

In this example, we stop the stream with an explicit call to RtAudio::stop-
Stream() (p. 29). When using callback functionality, it is also possible to stop
a stream by returning a non-zero value from the callback function.

Once set with RtAudio::setStreamCallback (p. 27), the callback process will
continue to run for the life of the stream (until the stream is closed with Rt-
Audio::closeStream() (p. 28) or the RtAudio (p. 23) instance is deleted). It
is possible to disassociate a callback function and cancel its process for an open
stream using the RtAudio::cancelStreamCallback() (p. 27) method. The
stream can then be used with blocking functionality or a new callback can be
associated with it.

1.8 Recording

Using RtAudio (p. 23) for audio input is almost identical to the way it is used
for playback. Here’s the blocking playback example rewritten for recording:

RtAudio by Gary P. Scavone, c© 2001-2002

1.8 Recording 11

// record.cpp

#include "RtAudio.h"

int main()

{

int count;

int channels = 2;

int sample_rate = 44100;

int buffer_size = 256; // 256 sample frames

int n_buffers = 4; // number of internal buffers used by device

float *buffer;

int device = 0; // 0 indicates the default or first available device

int stream; // our stream identifier

RtAudio *audio;

// Instantiate RtAudio and open a stream.

try {

audio = new RtAudio(&stream, 0, 0, device, channels,

RtAudio::RTAUDIO_FLOAT32, sample_rate, &buffer_size, n_buffers);

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

try {

// Get a pointer to the stream buffer

buffer = (float *) audio->getStreamBuffer(stream);

// Start the stream

audio->startStream(stream);

}

catch (RtError &error) {

error.printMessage();

goto cleanup;

}

// An example loop which runs for about 40000 sample frames

count = 0;

while (count < 40000) {

// Read a buffer of data

try {

audio->tickStream(stream);

}

catch (RtError &error) {

error.printMessage();

goto cleanup;

}

// Process the input samples (buffer_size sample frames) that were read

...

count += buffer_size;

RtAudio by Gary P. Scavone, c© 2001-2002

12 The RtAudio (p. 23) Tutorial

}

try {

// Stop the stream

audio->stopStream(stream);

}

catch (RtError &error) {

error.printMessage();

}

cleanup:

delete audio;

return 0;

}

In this example, the stream was opened for recording with a non-zero input-
Channels value. The only other difference between this example and that for
playback involves the order of data processing in the loop, where it is necessary
to first read a buffer of input data before manipulating it.

1.9 Duplex Mode

Finally, it is easy to use RtAudio (p. 23) for simultaneous audio input/output,
or duplex operation. In this example, we use a callback function and pass our
recorded data directly through for playback.

// duplex.cpp

#include <iostream>

#include "RtAudio.h"

// Pass-through function.

int pass(char *buffer, int buffer_size, void *)

{

// Surprise!! We do nothing to pass the data through.

return 0;

}

int main()

{

int channels = 2;

int sample_rate = 44100;

int buffer_size = 256; // 256 sample frames

int n_buffers = 4; // number of internal buffers used by device

int device = 0; // 0 indicates the default or first available device

int stream; // our stream identifier

double data[2];

char input;

RtAudio *audio;

RtAudio by Gary P. Scavone, c© 2001-2002

1.9 Duplex Mode 13

// Open a stream during RtAudio instantiation

try {

audio = new RtAudio(&stream, device, channels, device, channels, RtAudio::RTAUDIO_FLOAT64,

sample_rate, &buffer_size, n_buffers);

}

catch (RtError &error) {

error.printMessage();

exit(EXIT_FAILURE);

}

try {

// Set the stream callback function

audio->setStreamCallback(stream, &pass, NULL);

// Start the stream

audio->startStream(stream);

}

catch (RtError &error) {

error.printMessage();

goto cleanup;

}

cout << "\nRunning duplex ... press <enter> to quit.\n";

cin.get(input);

try {

// Stop and close the stream

audio->stopStream(stream);

audio->closeStream(stream);

}

catch (RtError &error) {

error.printMessage();

}

cleanup:

delete audio;

return 0;

}

When an RtAudio (p. 23) stream is running in duplex mode (nonzero input
AND output channels), the audio write (playback) operation always occurs be-
fore the audio read (record) operation. This sequence allows the use of a single
buffer to store both output and input data.

As we see with this example, the write-read sequence of operations does not
preclude the use of RtAudio (p. 23) in situations where input data is first
processed and then output through a duplex stream. When the stream buffer
is first allocated, it is initialized with zeros, which produces no audible result
when output to the device. In this example, anything recorded by the audio
stream input will be played out during the next round of audio processing.

RtAudio by Gary P. Scavone, c© 2001-2002

14 The RtAudio (p. 23) Tutorial

Note that duplex operation can also be achieved by opening one output stream
and one input stream using the same or different devices. However, there may be
timing problems when attempting to use two different devices, due to possible
device clock variations. This becomes even more difficult to achieve using two
separate callback streams because it is not possible to explicitly control the
calling order of the callback functions.

1.10 Summary of Methods

The following is short summary of public methods (not including constructors
and the destructor) provided by RtAudio (p. 23):

• RtAudio::openStream() (p. 26): opens a stream with the specified pa-
rameters.

• RtAudio::setStreamCallback() (p. 27): sets a user-defined callback
function for a given stream.

• RtAudio::cancelStreamCallback() (p. 27): cancels a callback process
and function for a given stream.

• RtAudio::getDeviceCount() (p. 27): returns the number of audio de-
vices available.

• RtAudio::getDeviceInfo() (p. 28): fills a user-supplied RTAUDIO -
DEVICE structure for a specified device.

• RtAudio::getStreamBuffer() (p. 28): returns a pointer to the stream
buffer.

• RtAudio::tickStream() (p. 28): triggers processing of input/output
data for a stream (blocking).

• RtAudio::closeStream() (p. 28): closes the specified stream (implicitly
called during object destruction). Once a stream is closed, the stream
identifier is invalid and should not be used in calling any other RtAudio
(p. 23) methods.

• RtAudio::startStream() (p. 28): (re)starts the specified stream, typi-
cally after it has been stopped with either stopStream() or abortStream()
or after first opening the stream.

• RtAudio::stopStream() (p. 29): stops the specified stream, allowing
any remaining samples in the queue to be played out and/or read in. This
does not implicitly call RtAudio::closeStream() (p. 28).

• RtAudio::abortStream() (p. 29): stops the specified stream, discarding
any remaining samples in the queue. This does not implicitly call close-
Stream().

• RtAudio::streamWillBlock() (p. 29): queries a stream to determine
whether a call to the tickStream() method will block. A return value of 0
indicates that the stream will NOT block. A positive return value indi-
cates the number of sample frames that cannot yet be processed without
blocking.

RtAudio by Gary P. Scavone, c© 2001-2002

1.11 Compiling 15

1.11 Compiling

In order to compile RtAudio (p. 23) for a specific OS and audio API, it is
necessary to supply the appropriate preprocessor definition and library within
the compiler statement:

OS: Audio
API:

Preproces-
sor
Definition:

Library: Example
Compiler
Statement:

Linux ALSA LINUX -
ALSA

libasound,
libpthread

g++ -Wall
-D LINUX -
ALSA -o
probe
probe.cpp
Rt-
Audio.cpp
-lasound
-lpthread

Linux OSS LINUX -
OSS

libpthread g++ -Wall
-D LINUX -
OSS -o
probe
probe.cpp
Rt-
Audio.cpp
-lpthread

Irix AL IRIX AL - libaudio,
libpthread

CC -Wall
-D IRIX -
AL -o
probe
probe.cpp
Rt-
Audio.cpp
-laudio
-lpthread

Windows Direct
Sound

-
WINDOWS -
DS

dsound.lib
(ver. 5.0
or
higher),
multithreaded

compiler
specific

The example compiler statements above could be used to compile the probe.cpp
example file, assuming that probe.cpp, RtAudio.h, and RtAudio.cpp all exist
in the same directory.

RtAudio by Gary P. Scavone, c© 2001-2002

16 The RtAudio (p. 23) Tutorial

1.12 OS Notes

RtAudio (p. 23) is designed to provide a common API across the various sup-
ported operating systems and audio libraries. Despite that, however, some issues
need to be mentioned with regard to each.

1.12.1 Linux:

RtAudio (p. 23) for Linux was developed under Redhat distributions 7.0 - 7.2.
Two different audio APIs are supported on Linux platforms: OSS and ALSA. The
OSS API has existed for at least 6 years and the Linux kernel is distributed with
free versions of OSS audio drivers. Therefore, a generic Linux system is most
likely to have OSS support. The ALSA API, although relatively new, is now
part of the Linux development kernel and offers significantly better functionality
than the OSS API. RtAudio (p. 23) provides support for the 0.9 and higher
versions of ALSA. Input/output latency on the order of 15 milliseconds can
typically be achieved under both OSS or ALSA by fine-tuning the RtAudio
(p. 23) buffer parameters (without kernel modifications). Latencies on the order
of 5 milliseconds or less can be achieved using a low-latency kernel patch and
increasing FIFO scheduling priority. The pthread library, which is used for
callback functionality, is a standard component of all Linux distributions.

The ALSA library includes OSS emulation support. That means that you can
run programs compiled for the OSS API even when using the ALSA drivers
and library. It should be noted however that OSS emulation under ALSA is
not perfect. Specifically, channel number queries seem to consistently produce
invalid results. While OSS emulation is successful for the majority of RtAudio
(p. 23) tests, it is recommended that the native ALSA implementation of Rt-
Audio (p. 23) be used on systems which have ALSA drivers installed.

The ALSA implementation of RtAudio (p. 23) makes no use of the ALSA
”plug” interface. All necessary data format conversions, channel compensation,
deinterleaving, and byte-swapping is handled by internal RtAudio (p. 23) rou-
tines.

1.12.2 Irix (SGI):

The Irix version of RtAudio (p. 23) was written and tested on an SGI Indy
running Irix version 6.5.4 and the newer ”al” audio library. RtAudio (p. 23)
does not compile under Irix version 6.3, mainly because the C++ compiler is too
old. Despite the relatively slow speed of the Indy, RtAudio (p. 23) was found
to behave quite well and input/output latency was very good. No problems
were found with respect to using the pthread library.

RtAudio by Gary P. Scavone, c© 2001-2002

1.13 Acknowledgements 17

1.12.3 Windows:

RtAudio (p. 23) under Windows is written using the DirectSound API. In
order to compile RtAudio (p. 23) under Windows, you must have the header
and source files for DirectSound version 5.0 or higher. As far as I know, there is
no DirectSoundCapture support for Windows NT (in which case, you cannot use
RtAudio (p. 23)). Audio output latency with DirectSound can be reasonably
good (on the order of 20 milliseconds). On the other hand, input audio latency
tends to be terrible (100 milliseconds or more). Further, DirectSound drivers
tend to crash easily when experimenting with buffer parameters. On my system,
I found it necessary to use values around nBuffers = 8 and bufferSize = 512
to avoid crashing my system. RtAudio (p. 23) was developed with Visual
C++ version 6.0. I was forced in several instances to modify code in order
to get it to compile under the non-standard version of C++ that Microsoft so
unprofessionally implemented. We can only hope that the developers of Visual
C++ 7.0 will have time to read the C++ standard.

1.13 Acknowledgements

The RtAudio (p. 23) API incorporates many of the concepts developed in the
PortAudio project by Phil Burk and Ross Bencina. Early development also
incorporated ideas from Bill Schottstaedt’s sndlib. The CCRMA SoundWire
group provided valuable feedback during the API proposal stages.

RtAudio (p. 23) was slowly developed over the course of many months
while in residence at the Institut Universitari de L’Audiovisual (IUA)
in Barcelona, Spain, the Laboratory of Acoustics and Audio Signal
Processing at the Helsinki University of Technology, Finland, and
the Center for Computer Research in Music and Acoustics (CCRMA) at
Stanford University. This work was supported in part by the United States
Air Force Office of Scientific Research (grant #F49620-99-1-0293).

RtAudio by Gary P. Scavone, c© 2001-2002

18 The RtAudio (p. 23) Tutorial

RtAudio by Gary P. Scavone, c© 2001-2002

Chapter 2

RtAudio Compound Index

2.1 RtAudio Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

RtAudio . 23
RtAudio::RTAUDIO DEVICE 31
RtError . 33

20 RtAudio Compound Index

RtAudio by Gary P. Scavone, c© 2001-2002

Chapter 3

RtAudio File Index

3.1 RtAudio File List

Here is a list of all files with brief descriptions:

RtAudio.h . 37

22 RtAudio File Index

RtAudio by Gary P. Scavone, c© 2001-2002

Chapter 4

RtAudio Class
Documentation

4.1 RtAudio Class Reference

#include <RtAudio.h>

Public Types

• typedef unsigned long RTAUDIO FORMAT
• typedef int (∗ RTAUDIO CALLBACK)(char ∗buffer, int bufferSize,

void ∗userData)
• enum { MAX SAMPLE RATES = 14 }

Public Methods

• RtAudio ()

The default constructor.

• RtAudio (int ∗streamId, int outputDevice, int outputChannels, int
inputDevice, int inputChannels, RTAUDIO FORMAT format, int
sampleRate, int ∗bufferSize, int numberOfBuffers)

A constructor which can be used to open a stream during instantiation.

• ∼RtAudio ()

The destructor.

24 RtAudio Class Documentation

• int openStream (int outputDevice, int outputChannels, int inputDevice,
int inputChannels, RTAUDIO FORMAT format, int sampleRate, int
∗bufferSize, int numberOfBuffers)

A public method for opening a stream with the specified parameters.

• void setStreamCallback (int streamId, RTAUDIO CALLBACK
callback, void ∗userData)

A public method which sets a user-defined callback function for a given
stream.

• void cancelStreamCallback (int streamId)
A public method which cancels a callback process and function for a given
stream.

• int getDeviceCount (void)
A public method which returns the number of audio devices found.

• void getDeviceInfo (int device, RTAUDIO DEVICE ∗info)
Fill a user-supplied RTAUDIO DEVICE (p. 31) structure for a specified
device.

• char∗ const getStreamBuffer (int streamId)
A public method which returns a pointer to the buffer for an open stream.

• void tickStream (int streamId)
Public method used to trigger processing of input/output data for a stream.

• void closeStream (int streamId)
Public method which closes a stream and frees any associated buffers.

• void startStream (int streamId)
Public method which starts a stream.

• void stopStream (int streamId)
Stop a stream, allowing any samples remaining in the queue to be played out
and/or read in.

• void abortStream (int streamId)
Stop a stream, discarding any samples remaining in the input/output queue.

• int streamWillBlock (int streamId)
Queries a stream to determine whether a call to the tickStream() (p. 28)
method will block.

RtAudio by Gary P. Scavone, c© 2001-2002

4.1 RtAudio Class Reference 25

Static Public Attributes

• const RTAUDIO FORMAT RTAUDIO SINT8
• const RTAUDIO FORMAT RTAUDIO SINT16
• const RTAUDIO FORMAT RTAUDIO SINT24
• const RTAUDIO FORMAT RTAUDIO SINT32
• const RTAUDIO FORMAT RTAUDIO FLOAT32
• const RTAUDIO FORMAT RTAUDIO FLOAT64

4.1.1 Member Typedef Documentation

4.1.1.1 typedef unsigned long RtAudio::RTAUDIO FORMAT

4.1.1.2 typedef int(∗ RtAudio::RTAUDIO CALLBACK)(char
∗buffer, int bufferSize, void ∗userData)

4.1.2 Member Enumeration Documentation

4.1.2.1 anonymous enum

Enumeration values:
MAX SAMPLE RATES

4.1.3 Constructor & Destructor Documentation

4.1.3.1 RtAudio::RtAudio ()

The default constructor.

Probes the system to make sure at least one audio input/output device is avail-
able and determines the api-specific identifier for each device found. An Rt-
Error (p. 33) error can be thrown if no devices are found or if a memory allo-
cation error occurs.

4.1.3.2 RtAudio::RtAudio (int ∗ streamId, int outputDevice,
int outputChannels, int inputDevice, int inputChannels,
RTAUDIO FORMAT format, int sampleRate, int ∗
bufferSize, int numberOfBuffers)

A constructor which can be used to open a stream during instantiation.

The specified output and/or input device identifiers correspond to those enumer-
ated via the getDeviceInfo() (p. 28) method. If device = 0, the default or first
available devices meeting the given parameters is selected. If an output or input

RtAudio by Gary P. Scavone, c© 2001-2002

26 RtAudio Class Documentation

channel value is zero, the corresponding device value is ignored. When a stream
is successfully opened, its identifier is returned via the ”streamId” pointer. An
RtError (p. 33) can be thrown if no devices are found for the given parameters,
if a memory allocation error occurs, or if a driver error occurs.

See also:
openStream() (p. 26)

4.1.3.3 RtAudio::∼RtAudio ()

The destructor.

Stops and closes any open streams and devices and deallocates buffer and struc-
ture memory.

4.1.4 Member Function Documentation

4.1.4.1 int RtAudio::openStream (int outputDevice, int
outputChannels, int inputDevice, int inputChannels,
RTAUDIO FORMAT format, int sampleRate, int ∗
bufferSize, int numberOfBuffers)

A public method for opening a stream with the specified parameters.

If successful, the opened stream ID is returned. Otherwise, an RtError (p. 33)
is thrown.

Parameters:
outputDevice: If equal to 0, the default or first device found meeting the

given parameters is opened. Otherwise, the device number should cor-
respond to one of those enumerated via the getDeviceInfo() (p. 28)
method.

outputChannels: The desired number of output channels. If equal to
zero, the outputDevice identifier is ignored.

inputDevice: If equal to 0, the default or first device found meeting the
given parameters is opened. Otherwise, the device number should cor-
respond to one of those enumerated via the getDeviceInfo() (p. 28)
method.

inputChannels: The desired number of input channels. If equal to zero,
the inputDevice identifier is ignored.

format: An RTAUDIO FORMAT specifying the desired sample data for-
mat.

sampleRate: The desired sample rate (sample frames per second).

RtAudio by Gary P. Scavone, c© 2001-2002

4.1 RtAudio Class Reference 27

bufferSize: A pointer value indicating the desired internal buffer size in
sample frames. The actual value used by the device is returned via
the same pointer. A value of zero can be specified, in which case the
lowest allowable value is determined.

numberOfBuffers: A value which can be used to help control device
latency. More buffers typically result in more robust performance,
though at a cost of greater latency. A value of zero can be specified,
in which case the lowest allowable value is used.

4.1.4.2 void RtAudio::setStreamCallback (int streamId,
RTAUDIO CALLBACK callback, void ∗ userData)

A public method which sets a user-defined callback function for a given stream.

This method assigns a callback function to a specific, previously opened stream
for non-blocking stream functionality. A separate process is initiated, though the
user function is called only when the stream is ”running” (between calls to the
startStream() (p. 28) and stopStream() (p. 29) methods, respectively). The
callback process remains active for the duration of the stream and is automati-
cally shutdown when the stream is closed (via the closeStream() (p. 28) method
or by object destruction). The callback process can also be shutdown and
the user function de-referenced through an explicit call to the cancelStream-
Callback() (p. 27) method. Note that a single stream can use only blocking or
callback functionality at the same time, though it is possible to alternate modes
on the same stream through the use of the setStreamCallback() (p. 27) and
cancelStreamCallback() (p. 27) methods (the blocking tickStream() (p. 28)
method can be used before a callback is set and/or after a callback is cancelled).
An RtError (p. 33) will be thrown for an invalid device argument.

4.1.4.3 void RtAudio::cancelStreamCallback (int streamId)

A public method which cancels a callback process and function for a given
stream.

This method shuts down a callback process and de-references the user function
for a specific stream. Callback functionality can subsequently be restarted on
the stream via the setStreamCallback() (p. 27) method. An RtError (p. 33)
will be thrown for an invalid device argument.

4.1.4.4 int RtAudio::getDeviceCount (void)

A public method which returns the number of audio devices found.

RtAudio by Gary P. Scavone, c© 2001-2002

28 RtAudio Class Documentation

4.1.4.5 void RtAudio::getDeviceInfo (int device,
RTAUDIO DEVICE ∗ info)

Fill a user-supplied RTAUDIO DEVICE (p. 31) structure for a specified de-
vice.

Any device between 0 and getDeviceCount() (p. 27)-1 is valid. If a device is
busy or otherwise unavailable, the structure member ”probed” has a value of
”false”. The system default input and output devices are referenced by device
identifier = 0. On systems which allow dynamic default device settings, the
default devices are not identified by name (specific device enumerations are
assigned device identifiers > 0). An RtError (p. 33) will be thrown for an
invalid device argument.

4.1.4.6 char ∗const RtAudio::getStreamBuffer (int streamId)

A public method which returns a pointer to the buffer for an open stream.

The user should fill and/or read the buffer data in interleaved format and then
call the tickStream() (p. 28) method. An RtError (p. 33) will be thrown for
an invalid stream identifier.

4.1.4.7 void RtAudio::tickStream (int streamId)

Public method used to trigger processing of input/output data for a stream.

This method blocks until all buffer data is read/written. An RtError (p. 33)
will be thrown for an invalid stream identifier or if a driver error occurs.

4.1.4.8 void RtAudio::closeStream (int streamId)

Public method which closes a stream and frees any associated buffers.

If an invalid stream identifier is specified, this method issues a warning and
returns (an RtError (p. 33) is not thrown).

4.1.4.9 void RtAudio::startStream (int streamId)

Public method which starts a stream.

An RtError (p. 33) will be thrown for an invalid stream identifier or if a driver
error occurs.

RtAudio by Gary P. Scavone, c© 2001-2002

4.1 RtAudio Class Reference 29

4.1.4.10 void RtAudio::stopStream (int streamId)

Stop a stream, allowing any samples remaining in the queue to be played out
and/or read in.

An RtError (p. 33) will be thrown for an invalid stream identifier or if a driver
error occurs.

4.1.4.11 void RtAudio::abortStream (int streamId)

Stop a stream, discarding any samples remaining in the input/output queue.

An RtError (p. 33) will be thrown for an invalid stream identifier or if a driver
error occurs.

4.1.4.12 int RtAudio::streamWillBlock (int streamId)

Queries a stream to determine whether a call to the tickStream() (p. 28)
method will block.

A return value of 0 indicates that the stream will NOT block. A positive
return value indicates the number of sample frames that cannot yet be processed
without blocking.

4.1.5 Member Data Documentation

4.1.5.1 const RTAUDIO FORMAT RtAudio::RTAUDIO SINT8
[static]

4.1.5.2 const RTAUDIO FORMAT RtAudio::RTAUDIO SINT16
[static]

4.1.5.3 const RTAUDIO FORMAT RtAudio::RTAUDIO SINT24
[static]

Upper 3 bytes of 32-bit integer.

4.1.5.4 const RTAUDIO FORMAT RtAudio::RTAUDIO SINT32
[static]

4.1.5.5 const RTAUDIO FORMAT RtAudio::RTAUDIO FLOAT32
[static]

Normalized between plus/minus 1.0.

RtAudio by Gary P. Scavone, c© 2001-2002

30 RtAudio Class Documentation

4.1.5.6 const RTAUDIO FORMAT RtAudio::RTAUDIO FLOAT64
[static]

Normalized between plus/minus 1.0.

The documentation for this class was generated from the following file:

• RtAudio.h

RtAudio by Gary P. Scavone, c© 2001-2002

4.2 RtAudio::RTAUDIO DEVICE Struct Reference 31

4.2 RtAudio::RTAUDIO DEVICE Struct Ref-
erence

#include <RtAudio.h>

Public Attributes

• char name [128]

• DEVICE ID id [2]

• bool probed

• int maxOutputChannels

• int maxInputChannels

• int maxDuplexChannels

• int minOutputChannels

• int minInputChannels

• int minDuplexChannels

• bool hasDuplexSupport

• int nSampleRates

• int sampleRates [MAX SAMPLE RATES]

• RTAUDIO FORMAT nativeFormats

4.2.1 Member Data Documentation

4.2.1.1 char RtAudio::RTAUDIO DEVICE::name

4.2.1.2 DEVICE ID RtAudio::RTAUDIO DEVICE::id

No value reported by getDeviceInfo() (p. 28).

4.2.1.3 bool RtAudio::RTAUDIO DEVICE::probed

true if the device capabilities were successfully probed.

RtAudio by Gary P. Scavone, c© 2001-2002

32 RtAudio Class Documentation

4.2.1.4 int RtAudio::RTAUDIO DEVICE::maxOutputChannels

4.2.1.5 int RtAudio::RTAUDIO DEVICE::maxInputChannels

4.2.1.6 int RtAudio::RTAUDIO DEVICE::maxDuplexChannels

4.2.1.7 int RtAudio::RTAUDIO DEVICE::minOutputChannels

4.2.1.8 int RtAudio::RTAUDIO DEVICE::minInputChannels

4.2.1.9 int RtAudio::RTAUDIO DEVICE::minDuplexChannels

4.2.1.10 bool RtAudio::RTAUDIO DEVICE::hasDuplexSupport

true if device supports duplex mode.

4.2.1.11 int RtAudio::RTAUDIO DEVICE::nSampleRates

Number of discrete rates or -1 if range supported.

4.2.1.12 int RtAudio::RTAUDIO DEVICE::sampleRates

Supported rates or (min, max) if range.

4.2.1.13 RTAUDIO FORMAT RtAudio::RTAUDIO -
DEVICE::nativeFormats

Bit mask of supported data formats.

The documentation for this struct was generated from the following file:

• RtAudio.h

RtAudio by Gary P. Scavone, c© 2001-2002

4.3 RtError Class Reference 33

4.3 RtError Class Reference

#include <RtAudio.h>

Public Types

• enum TYPE { WARNING, DEBUG WARNING, UNSPECI-
FIED, NO DEVICES FOUND, INVALID DEVICE, INVALID -
STREAM, MEMORY ERROR, INVALID PARAMETER,
DRIVER ERROR, SYSTEM ERROR, THREAD ERROR }

Public Methods

• RtError (const char ∗p, TYPE tipe=RtError::UNSPECIFIED)

The constructor.

• virtual ∼RtError (void)

The destructor.

• virtual void printMessage (void)

Prints ”thrown” error message to stdout.

• virtual const TYPE& getType (void)

Returns the ”thrown” error message TYPE.

• virtual const char∗ getMessage (void)

Returns the ”thrown” error message string.

Protected Attributes

• char error message [256]
• TYPE type

4.3.1 Member Enumeration Documentation

4.3.1.1 enum RtError::TYPE

Enumeration values:
WARNING

DEBUG WARNING

RtAudio by Gary P. Scavone, c© 2001-2002

34 RtAudio Class Documentation

UNSPECIFIED

NO DEVICES FOUND

INVALID DEVICE

INVALID STREAM

MEMORY ERROR

INVALID PARAMETER

DRIVER ERROR

SYSTEM ERROR

THREAD ERROR

4.3.2 Constructor & Destructor Documentation

4.3.2.1 RtError::RtError (const char ∗ p, TYPE tipe =
RtError::UNSPECIFIED)

The constructor.

4.3.2.2 RtError::∼RtError (void) [virtual]

The destructor.

4.3.3 Member Function Documentation

4.3.3.1 void RtError::printMessage (void) [virtual]

Prints ”thrown” error message to stdout.

4.3.3.2 const TYPE & RtError::getType (void) [inline, virtual]

Returns the ”thrown” error message TYPE.

4.3.3.3 const char ∗ RtError::getMessage (void) [inline, virtual]

Returns the ”thrown” error message string.

RtAudio by Gary P. Scavone, c© 2001-2002

4.3 RtError Class Reference 35

4.3.4 Member Data Documentation

4.3.4.1 char RtError::error message [protected]

4.3.4.2 TYPE RtError::type [protected]

The documentation for this class was generated from the following file:

• RtAudio.h

RtAudio by Gary P. Scavone, c© 2001-2002

36 RtAudio Class Documentation

RtAudio by Gary P. Scavone, c© 2001-2002

Chapter 5

RtAudio File
Documentation

5.1 RtAudio.h File Reference

#include <map>

Compounds

• class RtError
• class RtAudio
• struct RtAudio::RTAUDIO DEVICE
• struct RtAudio::RTAUDIO STREAM

Defines

• #define RTAUDIO H

5.1.1 Define Documentation

5.1.1.1 #define RTAUDIO H

Value:

38 RtAudio File Documentation

5.2 tutorial.txt File Reference

RtAudio by Gary P. Scavone, c© 2001-2002

Index

RTAUDIO H
RtAudio.h, 37

∼RtAudio
RtAudio, 26

∼RtError
RtError, 34

abortStream
RtAudio, 29

cancelStreamCallback
RtAudio, 27

closeStream
RtAudio, 28

DEBUG WARNING
RtError, 33

DRIVER ERROR
RtError, 34

error message
RtError, 35

getDeviceCount
RtAudio, 27

getDeviceInfo
RtAudio, 27

getMessage
RtError, 34

getStreamBuffer
RtAudio, 28

getType
RtError, 34

hasDuplexSupport
RtAudio::RTAUDIO -

DEVICE, 32

id
RtAudio::RTAUDIO -

DEVICE, 31
INVALID DEVICE

RtError, 34
INVALID PARAMETER

RtError, 34
INVALID STREAM

RtError, 34

MAX SAMPLE RATES
RtAudio, 25

maxDuplexChannels
RtAudio::RTAUDIO -

DEVICE, 32
maxInputChannels

RtAudio::RTAUDIO -
DEVICE, 32

maxOutputChannels
RtAudio::RTAUDIO -

DEVICE, 31
MEMORY ERROR

RtError, 34
minDuplexChannels

RtAudio::RTAUDIO -
DEVICE, 32

minInputChannels
RtAudio::RTAUDIO -

DEVICE, 32
minOutputChannels

RtAudio::RTAUDIO -
DEVICE, 32

name
RtAudio::RTAUDIO -

DEVICE, 31
nativeFormats

40 INDEX

RtAudio::RTAUDIO -
DEVICE, 32

NO DEVICES FOUND
RtError, 34

nSampleRates
RtAudio::RTAUDIO -

DEVICE, 32

openStream
RtAudio, 26

printMessage
RtError, 34

probed
RtAudio::RTAUDIO -

DEVICE, 31

RtAudio
MAX SAMPLE RATES, 25
RtAudio, 25

RtAudio, 23
∼RtAudio, 26
abortStream, 29
cancelStreamCallback, 27
closeStream, 28
getDeviceCount, 27
getDeviceInfo, 27
getStreamBuffer, 28
openStream, 26
RtAudio, 25
RTAUDIO CALLBACK, 25
RTAUDIO FLOAT32, 29
RTAUDIO FLOAT64, 29
RTAUDIO FORMAT, 25
RTAUDIO SINT16, 29
RTAUDIO SINT24, 29
RTAUDIO SINT32, 29
RTAUDIO SINT8, 29
setStreamCallback, 27
startStream, 28
stopStream, 28
streamWillBlock, 29
tickStream, 28

RtAudio.h, 37
RTAUDIO H, 37

RtAudio::RTAUDIO DEVICE, 31

hasDuplexSupport, 32
id, 31
maxDuplexChannels, 32
maxInputChannels, 32
maxOutputChannels, 31
minDuplexChannels, 32
minInputChannels, 32
minOutputChannels, 32
name, 31
nativeFormats, 32
nSampleRates, 32
probed, 31
sampleRates, 32

RTAUDIO CALLBACK
RtAudio, 25

RTAUDIO FLOAT32
RtAudio, 29

RTAUDIO FLOAT64
RtAudio, 29

RTAUDIO FORMAT
RtAudio, 25

RTAUDIO SINT16
RtAudio, 29

RTAUDIO SINT24
RtAudio, 29

RTAUDIO SINT32
RtAudio, 29

RTAUDIO SINT8
RtAudio, 29

RtError
DEBUG WARNING, 33
DRIVER ERROR, 34
INVALID DEVICE, 34
INVALID PARAMETER, 34
INVALID STREAM, 34
MEMORY ERROR, 34
NO DEVICES FOUND, 34
RtError, 34
SYSTEM ERROR, 34
THREAD ERROR, 34
UNSPECIFIED, 33
WARNING, 33

RtError, 33
∼RtError, 34
error message, 35
getMessage, 34

RtAudio by Gary P. Scavone, c© 2001-2002

INDEX 41

getType, 34
printMessage, 34
RtError, 34
TYPE, 33
type, 35

sampleRates
RtAudio::RTAUDIO -

DEVICE, 32
setStreamCallback

RtAudio, 27
startStream

RtAudio, 28
stopStream

RtAudio, 28
streamWillBlock

RtAudio, 29
SYSTEM ERROR

RtError, 34

THREAD ERROR
RtError, 34

tickStream
RtAudio, 28

tutorial.txt, 38
TYPE

RtError, 33
type

RtError, 35

UNSPECIFIED
RtError, 33

WARNING
RtError, 33

RtAudio by Gary P. Scavone, c© 2001-2002

