remove unused function
[ardour.git] / gtk2_ardour / volume_controller.cc
index ca5b0abaa274bad494bdce9ebcc9b0cbaad191ce..007b623355ab497084cc7c138c25c86ef8d8bae7 100644 (file)
@@ -101,7 +101,7 @@ VolumeController::dB_printer (char buf[32], const boost::shared_ptr<PBD::Control
                        }
                }
        } else {
-               snprintf (buf, sizeof (buf), "--");
+               snprintf (buf, 32, "--");
        }
 }
 
@@ -116,7 +116,7 @@ VolumeController::to_control_value (double display_value)
        if (_linear) {
                v = _controllable->lower() + ((_controllable->upper() - _controllable->lower()) * display_value);
        } else {
-               v = slider_position_to_gain_with_max (display_value, ARDOUR::Config->get_max_gain());
+               v = ARDOUR::slider_position_to_gain_with_max (display_value, ARDOUR::Config->get_max_gain());
        }
 
        return v;
@@ -130,7 +130,7 @@ VolumeController::to_display_value (double control_value)
        if (_linear) {
                v = (control_value - _controllable->lower ()) / (_controllable->upper() - _controllable->lower());
        } else {
-               v = gain_to_slider_position_with_max (control_value, ARDOUR::Config->get_max_gain());
+               v = ARDOUR::gain_to_slider_position_with_max (control_value, _controllable->upper());
        }
 
        return v;
@@ -139,29 +139,142 @@ VolumeController::to_display_value (double control_value)
 double
 VolumeController::adjust (double control_delta)
 {
-       double v = _controllable->get_value ();
-       double abs_delta = fabs (control_delta);
-
-       /* convert to linear/fractional slider position domain */
-       v = gain_to_slider_position_with_max (v, ARDOUR::Config->get_max_gain());
-       /* adjust in this domain */
-       v += control_delta;
-       /* clamp in this domain */
-       v = std::max (0.0, std::min (1.0, v));
-       /* convert back to gain coefficient domain */
-       v = slider_position_to_gain_with_max (v, ARDOUR::Config->get_max_gain());
-       /* clamp in this domain */
-       v = std::max (_controllable->lower(), std::min (_controllable->upper(), v));
-
-       /* now round to some precision in the dB domain */
-       v = accurate_coefficient_to_dB (v);
-
-       if (abs_delta <= 0.01) {
-               v -= fmod (v, 0.05);
+       double v;
+
+       if (!_linear) {
+               /* we map back into the linear/fractional slider position,
+                * because this kind of control goes all the way down
+                * to -inf dB, and we want this occur in a reasonable way in
+                * terms of user interaction. if we leave the adjustment in the
+                * gain coefficient domain (or dB domain), the lower end of the
+                * control range (getting close to -inf dB) takes forever.
+                */
+#if 0
+               /* convert to linear/fractional slider position domain */
+               v = ARDOUR::gain_to_slider_position_with_max (_controllable->get_value (), _controllable->upper());
+               /* increment in this domain */
+               v += control_delta;
+               /* clamp to appropriate range for linear/fractional slider domain */
+               v = std::max (0.0, std::min (1.0, v));
+               /* convert back to gain coefficient domain */
+               v = ARDOUR::slider_position_to_gain_with_max (v, _controllable->upper());
+               /* clamp in controller domain */
+               v = std::max (_controllable->lower(), std::min (_controllable->upper(), v));
+               /* convert to dB domain */
+               v = accurate_coefficient_to_dB (v);
+               /* round up/down to nearest 0.1dB */
+               if (control_delta > 0.0) {
+                       v = ceil (v * 10.0) / 10.0;
+               } else {
+                       v = floor (v * 10.0) / 10.0;
+               }
+               /* and return it */
+               return dB_to_coefficient (v);
+#else
+               /* ^^ Above algorithm is not symmetric. Scroll up to steps, scoll down two steps, -> different gain.
+                *
+                * see ./libs/gtkmm2ext/gtkmm2ext/motionfeedback.h and gtk2_ardour/monitor_section.cc:
+                * min-delta (corr) = MIN(0.01 * page inc, 1 * size_inc) // (gain_control uses size_inc=0.01, page_inc=0.1)
+                * range corr: 0..2   -> -inf..+6dB
+                * step sizes  [0.01, 0.10, 0.20] * page_inc,   [1,2,10,100] * step_inc. [1,2,10,100] * page_inc
+                *
+                * 0.001, 0.01, 0.02, 0.1, .2,  1, 10
+                * -> 1k steps between -inf..0dB
+                * -> 1k steps between 0..+dB
+                *
+                *  IOW:
+                *  the range is from *0  (-inf dB)  to  *2.0  ( +6dB)
+                *  the knob is configured to to go in steps of 0.001  - that's 2000 steps between 0 and 2.
+                *  or 1000 steps between 0 and 1.
+                *
+                *  we cannot round to .01dB steps because
+                *  There are only 600 possible values between  +0db and +6dB when going in steps of .01dB
+                *  1000/600 = 1.66666...
+                *
+                ******
+                * idea: make the 'controllable use a fixed range of dB.
+                * do a 1:1 mapping between values.  :et's stick with the range of 0..2 in 0.001 steps
+                *
+                * "-80" becomes 0 and "+6" becomes 2000. (NB +6dB is actually 1995, but we clamp that to the top)
+                *
+                * This approach is better (more consistet) but not good. At least the dial does not annoy me as much
+                * anymore as it did before.
+                *
+                * const double stretchfactor = rint((_controllable->upper() - _controllable->lower()) / 0.001); // 2000;
+                * const double logfactor =  stretchfactor / ((20.0 * log10( _controllable->upper())) + 80.0); // = 23.250244732
+                */
+               v = _controllable->get_value ();
+               /* assume everything below -60dB is silent (.001 ^= -60dB)
+                * but map range -80db..+6dB to a scale of 0..2000
+                * 80db was motivated because 2000/((20.0 * log(1)) + 80.0) is an integer value. "0dB" is included on the scale.
+                * but this leaves a dead area at the bottom of the meter..
+                */
+               double arange = (v >= 0.001) ? ( ((20.0 * log10(v)) + 80.0) * 23.250244732 ) : ( 0 );
+               /* add the delta */
+               v = rint(arange) + rint(control_delta * 1000.0); // (min steps is 1.0/0.001 == 1000.0)
+               /* catch bottom -80..-60 db in one step */
+               if (v < 466) v = (control_delta > 0) ? 0.001 : 0;
+               /* reverse operation  (pow(10, .05 * ((v / 23.250244732) - 80.0)))
+                * can be simplified to :*/
+               else v = pow(10, (v * 0.00215051499) - 4.0);
+               /* clamp value in coefficient domain */
+               v = std::max (_controllable->lower(), std::min (_controllable->upper(), v));
+               return v;
+#endif
        } else {
-               v -= fmod (v, 0.1);
-       } 
+               double mult;
+
+               if (control_delta < 0.0) {
+                       mult = -1.0;
+               } else {
+                       mult = 1.0;
+               }
+
+               if (fabs (control_delta) < 0.05) {
+                       control_delta = mult * 0.05;
+               } else  {
+                       control_delta = mult * 0.1;
+               }
+
+               v = _controllable->get_value();
+
+               if (v == 0.0) {
+                       /* if we don't special case this, we can't escape from
+                          the -infinity dB black hole.
+                       */
+                       if (control_delta > 0.0) {
+                               v = dB_to_coefficient (-100 + control_delta);
+                       }
+               } else {
+                       static const double dB_minus_200 = dB_to_coefficient (-200.0);
+                       static const double dB_minus_100 = dB_to_coefficient (-100.0);
+                       static const double dB_minus_50 = dB_to_coefficient (-50.0);
+                       static const double dB_minus_20 = dB_to_coefficient (-20.0);
+
+                       if (control_delta < 0 && v < dB_minus_200) {
+                               v = 0.0;
+                       } else {
+
+                               /* non-linear scaling as the dB level gets low 
+                                  so that we can hit -inf and get back out of
+                                  it appropriately.
+                               */
+
+                               if (v < dB_minus_100) {
+                                       control_delta *= 1000.0;
+                               } else if (v < dB_minus_50) {
+                                       control_delta *= 100.0;
+                               } else if (v < dB_minus_20) {
+                                       control_delta *= 10.0;
+                               }
+
+                               v = accurate_coefficient_to_dB (v);
+                               v += control_delta;
+                               v = dB_to_coefficient (v);
+                       }
+               }
+
+               return std::max (_controllable->lower(), std::min (_controllable->upper(), v));
+       }
 
-       /* and return it */
-       return dB_to_coefficient (v);
 }