Symmetric x-fade, use equivalent of -6dB per step for 7 steps.
[ardour.git] / libs / ardour / interpolation.cc
index d7f1c835df74050320510ee61ab8cdb680043393..bccaa45553484bb0eceb9e82eeb6b578a3b174a4 100644 (file)
-#include <stdint.h>
-
-#include "ardour/interpolation.h"
+/*
+    Copyright (C) 2012 Paul Davis 
 
-using namespace ARDOUR;
+    This program is free software; you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation; either version 2 of the License, or
+    (at your option) any later version.
 
-nframes_t
-FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
-{
-       // the idea behind phase is that when the speed is not 1.0, we have to 
-       // interpolate between samples and then we have to store where we thought we were. 
-       // rather than being at sample N or N+1, we were at N+0.8792922
-       // so the "phase" element, if you want to think about this way, 
-       // varies from 0 to 1, representing the "offset" between samples
-       uint64_t        phase = last_phase[channel];
-       
-       // acceleration
-       int64_t  phi_delta;
-
-       // phi = fixed point speed
-       if (phi != target_phi) {
-               phi_delta = ((int64_t)(target_phi - phi)) / nframes;
-       } else {
-               phi_delta = 0;
-       }
-       
-       // index in the input buffers
-       nframes_t   i = 0;
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
 
-       for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
-               i = phase >> 24;
-               Sample fractional_phase_part = (phase & fractional_part_mask) / binary_scaling_factor;
-               
-               if (input && output) {
-                       // Linearly interpolate into the output buffer
-                       // using fixed point math
-                       output[outsample] = 
-                               input[i] * (1.0f - fractional_phase_part) +
-                               input[i+1] * fractional_phase_part;
-               }
-               
-               phase += phi + phi_delta;
-       }
+    You should have received a copy of the GNU General Public License
+    along with this program; if not, write to the Free Software
+    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 
-       last_phase[channel] = (phase & fractional_part_mask);
-       
-       // playback distance
-       return i;
-}
+*/
 
-void 
-FixedPointLinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
-{
-       last_phase.push_back (0);
-}
+#include <stdint.h>
+#include <cstdio>
 
-void 
-FixedPointLinearInterpolation::remove_channel_from ()
-{
-       last_phase.pop_back ();
-}
+#include "ardour/interpolation.h"
 
-void
-FixedPointLinearInterpolation::reset() 
-{
-       for (size_t i = 0; i <= last_phase.size(); i++) {
-               last_phase[i] = 0;
-       }
-}
+using namespace ARDOUR;
 
 
-nframes_t
-LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
+framecnt_t
+LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
 {
        // index in the input buffers
-       nframes_t   i = 0;
-       
-       double acceleration;
-       double distance = 0.0;
-       
+       framecnt_t i = 0;
+
+       double acceleration = 0;
+
        if (_speed != _target_speed) {
                acceleration = _target_speed - _speed;
-       } else {
-               acceleration = 0.0;
        }
-       
-       printf("phase before: %lf\n", phase[channel]);
-       distance = phase[channel];
-       for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
-               i = distance;
-               Sample fractional_phase_part = distance - i;
+
+       for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+               double const d = phase[channel] + outsample * (_speed + acceleration);
+               i = floor(d);
+               Sample fractional_phase_part = d - i;
                if (fractional_phase_part >= 1.0) {
                        fractional_phase_part -= 1.0;
                        i++;
                }
-               //printf("I: %u, distance: %lf, fractional_phase_part: %lf\n", i, distance, fractional_phase_part);
-               
+
                if (input && output) {
                // Linearly interpolate into the output buffer
-                       output[outsample] = 
+                       output[outsample] =
                                input[i] * (1.0f - fractional_phase_part) +
                                input[i+1] * fractional_phase_part;
                }
-               //printf("distance before: %lf\n", distance);
-               distance += _speed + acceleration;
-               //printf("distance after: %lf, _speed: %lf\n", distance, _speed);
        }
-       
-       printf("before assignment: i: %d, distance: %lf\n", i, distance);
+
+       double const distance = phase[channel] + nframes * (_speed + acceleration);
        i = floor(distance);
-       printf("after assignment: i: %d, distance: %16lf\n", i, distance);
-       phase[channel] = distance - floor(distance);
-       printf("speed: %16lf, i after: %d, distance after: %16lf, phase after: %16lf\n", _speed, i, distance, phase[channel]);
-       
+       phase[channel] = distance - i;
        return i;
 }
 
-void 
-LinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
+framecnt_t
+CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
 {
-       phase.push_back (0.0);
-}
+    // index in the input buffers
+    framecnt_t   i = 0;
 
-void 
-LinearInterpolation::remove_channel_from ()
-{
-       phase.pop_back ();
-}
+    double acceleration;
+    double distance = 0.0;
 
+    if (_speed != _target_speed) {
+        acceleration = _target_speed - _speed;
+    } else {
+           acceleration = 0.0;
+    }
 
-void
-LinearInterpolation::reset() 
-{
-       for (size_t i = 0; i <= phase.size(); i++) {
-               phase[i] = 0.0;
-       }
-}
+    distance = phase[channel];
 
-LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0)
-{
-       _speed = 1.0;
-}
+    if (nframes < 3) {
+           /* no interpolation possible */
 
-LibSamplerateInterpolation::~LibSamplerateInterpolation() 
-{
-       for (size_t i = 0; i < state.size(); i++) {
-               state[i] = src_delete (state[i]);
-       }
-}
+           for (i = 0; i < nframes; ++i) {
+                   output[i] = input[i];
+           }
 
-void
-LibSamplerateInterpolation::set_speed (double new_speed)
-{ 
-       _speed = new_speed; 
-       for (size_t i = 0; i < state.size(); i++) {
-               src_set_ratio (state[i], 1.0/_speed);
-       }
-}
+           return nframes;
+    }
 
-void
-LibSamplerateInterpolation::reset_state ()
-{
-       printf("INTERPOLATION: reset_state()\n");
-       for (size_t i = 0; i < state.size(); i++) {
-               if (state[i]) {
-                       src_reset (state[i]);
-               } else {
-                       state[i] = src_new (SRC_SINC_FASTEST, 1, &error);
-               }
-       }
-}
+    /* keep this condition out of the inner loop */
 
-void
-LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) 
-{
-       SRC_DATA* newdata = new SRC_DATA;
-       
-       /* Set up sample rate converter info. */
-       newdata->end_of_input = 0 ; 
-
-       newdata->input_frames  = input_buffer_size;
-       newdata->output_frames = output_buffer_size;
-
-       newdata->input_frames_used = 0 ;
-       newdata->output_frames_gen = 0 ;
-
-       newdata->src_ratio = 1.0/_speed;
-       
-       data.push_back (newdata);
-       state.push_back (0);
-       
-       reset_state ();
-}
+    if (input && output) {
 
-void
-LibSamplerateInterpolation::remove_channel_from () 
-{
-       delete data.back ();
-       data.pop_back ();
-       delete state.back ();
-       state.pop_back ();
-       reset_state ();
-}
+           Sample inm1;
 
-nframes_t
-LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
-{      
-       if (!data.size ()) {
-               printf ("ERROR: trying to interpolate with no channels\n");
-               return 0;
-       }
-       
-       data[channel]->data_in     = input;
-       data[channel]->data_out   = output;
-       
-       data[channel]->input_frames  = nframes * _speed;
-       data[channel]->output_frames = nframes;
-       data[channel]->src_ratio         = 1.0/_speed; 
-
-       if ((error = src_process (state[channel], data[channel]))) {    
-               printf ("\nError : %s\n\n", src_strerror (error));
-               exit (1);
-       }
-       
-       //printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used);
-       
-       return data[channel]->input_frames_used;
+           if (floor (distance) == 0.0) {
+                   /* best guess for the fake point we have to add to be able to interpolate at i == 0:
+                      .... maintain slope of first actual segment ...
+                   */
+                   inm1 = input[i] - (input[i+1] - input[i]);
+           } else {
+                   inm1 = input[i-1];
+           }
+
+           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+
+                   float f = floor (distance);
+                   float fractional_phase_part = distance - f;
+
+                   /* get the index into the input we should start with */
+
+                   i = lrintf (f);
+
+                   /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory
+                      it should always be < 1.0. If it ever >= 1.0, then bump the index we use
+                      and back it off. This is the point where we "skip" an entire sample in the
+                      input, because the phase part has accumulated so much error that we should
+                      really be closer to the next sample. or something like that ...
+                   */
+
+                   if (fractional_phase_part >= 1.0) {
+                           fractional_phase_part -= 1.0;
+                           ++i;
+                   }
+
+                   // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
+                   // optimization to take care of the rest
+                   // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)
+
+                   output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
+                                                         fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
+                                                               fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));
+
+                   distance += _speed + acceleration;
+                   inm1 = input[i];
+           }
+
+           i = floor(distance);
+           phase[channel] = distance - floor(distance);
+
+    } else {
+           /* used to calculate play-distance with acceleration (silent roll)
+            * (use same algorithm as real playback for identical rounding/floor'ing)
+            */
+           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+                   distance += _speed + acceleration;
+           }
+           i = floor(distance);
+    }
+
+    return i;
 }