if a request to reset the speed to zero as the default arrives when stopped, reset...
[ardour.git] / libs / ardour / interpolation.cc
index 066507283b6bbf8d375e12b1c113f78006bd56e7..ccaaca7e76322f13ff5097e6d1eeaaa0b203ecc4 100644 (file)
 #include <stdint.h>
+#include <cstdio>
+
 #include "ardour/interpolation.h"
 
 using namespace ARDOUR;
 
-nframes_t
-LinearInterpolation::interpolate (nframes_t nframes, Sample *input, Sample *output)
+
+framecnt_t
+LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
 {
-       // the idea is that when the speed is not 1.0, we have to 
-       // interpolate between samples and then we have to store where we thought we were. 
-       // rather than being at sample N or N+1, we were at N+0.8792922
-       
        // index in the input buffers
-       nframes_t   i = 0;
-       
-       double acceleration;
-       double distance = 0.0;
-       
+       framecnt_t i = 0;
+
+       double acceleration = 0;
+
        if (_speed != _target_speed) {
                acceleration = _target_speed - _speed;
-       } else {
-               acceleration = 0.0;
        }
 
-       for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
-               i = distance;
-               Sample fractional_phase_part = distance - i;
-               
+       for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+               double const d = phase[channel] + outsample * (_speed + acceleration);
+               i = floor(d);
+               Sample fractional_phase_part = d - i;
+               if (fractional_phase_part >= 1.0) {
+                       fractional_phase_part -= 1.0;
+                       i++;
+               }
+
                if (input && output) {
-               // Linearly interpolate into the output buffer
-                       output[outsample] = 
+               // Linearly interpolate into the output buffer
+                       output[outsample] =
                                input[i] * (1.0f - fractional_phase_part) +
                                input[i+1] * fractional_phase_part;
                }
-               distance   += _speed + acceleration;
        }
-       
-       i = (distance + 0.5L);
-       // playback distance
+
+       double const distance = phase[channel] + nframes * (_speed + acceleration);
+       i = floor(distance);
+       phase[channel] = distance - i;
        return i;
 }
+
+framecnt_t
+CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
+{
+    // index in the input buffers
+    framecnt_t   i = 0;
+
+    double acceleration;
+    double distance = 0.0;
+
+    if (_speed != _target_speed) {
+        acceleration = _target_speed - _speed;
+    } else {
+           acceleration = 0.0;
+    }
+
+    distance = phase[channel];
+
+    if (nframes < 3) {
+           /* no interpolation possible */
+
+           for (i = 0; i < nframes; ++i) {
+                   output[i] = input[i];
+           }
+
+           return nframes;
+    }
+
+    /* keep this condition out of the inner loop */
+
+    if (input && output) {
+
+           Sample inm1;
+
+           if (floor (distance) == 0.0) {
+                   /* best guess for the fake point we have to add to be able to interpolate at i == 0:
+                      .... maintain slope of first actual segment ...
+                   */
+                   inm1 = input[i] - (input[i+1] - input[i]);
+           } else {
+                   inm1 = input[i-1];
+           }
+
+           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+
+                   float f = floor (distance);
+                   float fractional_phase_part = distance - f;
+
+                   /* get the index into the input we should start with */
+
+                   i = lrintf (f);
+
+                   /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory
+                      it should always be < 1.0. If it ever >= 1.0, then bump the index we use
+                      and back it off. This is the point where we "skip" an entire sample in the
+                      input, because the phase part has accumulated so much error that we should
+                      really be closer to the next sample. or something like that ...
+                   */
+
+                   if (fractional_phase_part >= 1.0) {
+                           fractional_phase_part -= 1.0;
+                           ++i;
+                   }
+
+                   // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
+                   // optimization to take care of the rest
+                   // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)
+
+                   output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
+                                                         fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
+                                                               fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));
+
+                   distance += _speed + acceleration;
+                   inm1 = input[i];
+           }
+
+    } else {
+
+           /* not sure that this is ever utilized - it implies that one of the input/output buffers is missing */
+
+           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+                   distance += _speed + acceleration;
+           }
+    }
+
+    i = floor(distance);
+    phase[channel] = distance - floor(distance);
+
+    return i;
+}