some LV2 debug tracing
[ardour.git] / libs / ardour / meter.cc
index 1ce610d13c21efacf4377781c3247b791747cf32..8da2bfa026ac3ab3b4d304bf4dbae9b6a06ad4a7 100644 (file)
 /*
-    Copyright (C) 2006 Paul Davis 
-    
+    Copyright (C) 2006 Paul Davis
+
     This program is free software; you can redistribute it and/or modify it
     under the terms of the GNU General Public License as published by the Free
     Software Foundation; either version 2 of the License, or (at your option)
     any later version.
-    
+
     This program is distributed in the hope that it will be useful, but WITHOUT
     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     for more details.
-    
+
     You should have received a copy of the GNU General Public License along
     with this program; if not, write to the Free Software Foundation, Inc.,
     675 Mass Ave, Cambridge, MA 02139, USA.
 */
 
-#include <ardour/meter.h>
+#include "ardour/meter.h"
 #include <algorithm>
 #include <cmath>
-#include <ardour/buffer_set.h>
-#include <ardour/peak.h>
-#include <ardour/dB.h>
-#include <ardour/session.h>
+#include "ardour/buffer_set.h"
+#include "ardour/peak.h"
+#include "ardour/dB.h"
+#include "ardour/session.h"
+#include "ardour/midi_buffer.h"
+#include "ardour/audio_buffer.h"
+#include "ardour/runtime_functions.h"
 
-namespace ARDOUR {
+using namespace std;
 
+using namespace ARDOUR;
+
+PBD::Signal0<void> Metering::Meter;
 
 /** Get peaks from @a bufs
- * Input acceptance is lenient - the first n audio buffers from @a bufs will
+ * Input acceptance is lenient - the first n buffers from @a bufs will
  * be metered, where n was set by the last call to setup(), excess meters will
  * be set to 0.
  */
 void
-PeakMeter::run (BufferSet& bufs, jack_nframes_t nframes, jack_nframes_t offset)
+PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
 {
-       size_t meterable = std::min(bufs.count().get(DataType::AUDIO), _peak_power.size());
+       if (!_active && !_pending_active) {
+               return;
+       }
 
-       // Meter what we have
-       for (size_t n = 0; n < meterable; ++n) {
-               _peak_power[n] = compute_peak (bufs.get_audio(n).data(nframes, offset), nframes, _peak_power[n]); 
+        // cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
+
+       const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
+       const uint32_t n_midi  = min (current_meters.n_midi(), bufs.count().n_midi());
+
+       uint32_t n = 0;
+
+       // Meter MIDI in to the first n_midi peaks
+       for (uint32_t i = 0; i < n_midi; ++i, ++n) {
+               float val = 0.0f;
+               for (MidiBuffer::iterator e = bufs.get_midi(i).begin(); e != bufs.get_midi(i).end(); ++e) {
+                       const Evoral::MIDIEvent<framepos_t> ev(*e, false);
+                       if (ev.is_note_on()) {
+                               const float this_vel = log(ev.buffer()[2] / 127.0 * (M_E*M_E-M_E) + M_E) - 1.0;
+                               if (this_vel > val) {
+                                       val = this_vel;
+                               }
+                       } else {
+                               val += 1.0 / bufs.get_midi(n).capacity();
+                               if (val > 1.0) {
+                                       val = 1.0;
+                               }
+                       }
+               }
+               _peak_power[n] = max (val, _peak_power[n]);
+       }
+
+       // Meter audio in to the rest of the peaks
+       for (uint32_t i = 0; i < n_audio; ++i, ++n) {
+               _peak_power[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_power[n]);
        }
 
        // Zero any excess peaks
-       for (size_t n = meterable; n < _peak_power.size(); ++n) {
-               _peak_power[n] = 0;
+       for (uint32_t i = n; i < _peak_power.size(); ++i) {
+               _peak_power[i] = 0.0f;
        }
+
+       _active = _pending_active;
 }
 
 void
 PeakMeter::reset ()
 {
        for (size_t i = 0; i < _peak_power.size(); ++i) {
-               _peak_power[i] = 0;
+               _peak_power[i] = 0.0f;
+       }
+}
+
+void
+PeakMeter::reset_max ()
+{
+       for (size_t i = 0; i < _max_peak_power.size(); ++i) {
+               _max_peak_power[i] = -INFINITY;
+       }
+}
+
+bool
+PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
+{
+       out = in;
+       return true;
+}
+
+bool
+PeakMeter::configure_io (ChanCount in, ChanCount out)
+{
+       if (out != in) { // always 1:1
+               return false;
        }
+
+       current_meters = in;
+
+        reset_max_channels (in);
+
+       return Processor::configure_io (in, out);
+}
+
+void
+PeakMeter::reflect_inputs (const ChanCount& in)
+{
+       current_meters = in;
 }
 
 void
-PeakMeter::setup (const ChanCount& in)
+PeakMeter::reset_max_channels (const ChanCount& chn)
 {
-       uint32_t limit = in.get(DataType::AUDIO);
+       uint32_t const limit = chn.n_total();
 
        while (_peak_power.size() > limit) {
                _peak_power.pop_back();
                _visible_peak_power.pop_back();
+               _max_peak_power.pop_back();
        }
 
        while (_peak_power.size() < limit) {
-               _peak_power.push_back (0);
-               _visible_peak_power.push_back (0);
+               _peak_power.push_back(0);
+               _visible_peak_power.push_back(minus_infinity());
+               _max_peak_power.push_back(minus_infinity());
        }
 
        assert(_peak_power.size() == limit);
        assert(_visible_peak_power.size() == limit);
+       assert(_max_peak_power.size() == limit);
 }
 
 /** To be driven by the Meter signal from IO.
- * Caller MUST hold io_lock!
+ * Caller MUST hold its own processor_lock to prevent reconfiguration
+ * of meter size during this call.
  */
+
 void
 PeakMeter::meter ()
 {
+       if (!_active) {
+               return;
+       }
+
        assert(_visible_peak_power.size() == _peak_power.size());
 
-       const size_t limit = _peak_power.size();
+       const size_t limit = min (_peak_power.size(), (size_t) current_meters.n_total ());
 
        for (size_t n = 0; n < limit; ++n) {
 
-               /* XXX we should use atomic exchange here */
-
                /* grab peak since last read */
 
-               float new_peak = _peak_power[n];
-               _peak_power[n] = 0;
-               
+               float new_peak = _peak_power[n]; /* XXX we should use atomic exchange from here ... */
+               _peak_power[n] = 0;              /* ... to here */
+
                /* compute new visible value using falloff */
 
                if (new_peak > 0.0) {
-                       new_peak = coefficient_to_dB (new_peak);
+                       new_peak = fast_coefficient_to_dB (new_peak);
                } else {
                        new_peak = minus_infinity();
                }
-               
+
+               /* update max peak */
+
+               _max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
+
                if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
                        _visible_peak_power[n] = new_peak;
                } else {
                        // do falloff
-                       new_peak = _visible_peak_power[n] - Config->get_meter_falloff();
+                       new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
                        _visible_peak_power[n] = std::max (new_peak, -INFINITY);
                }
        }
 }
 
-} // namespace ARDOUR
+XMLNode&
+PeakMeter::state (bool full_state)
+{
+       XMLNode& node (Processor::state (full_state));
+       node.add_property("type", "meter");
+       return node;
+}
+
+