debug output
[ardour.git] / libs / ardour / pi_controller.cc
index 5aee7f23011933568b7f58fdb8126707bc0ba54c..0d9e5b8c37e43ba1cfed3a9f44468742e58b5639 100644 (file)
@@ -42,10 +42,11 @@ PIController::PIController (double resample_factor, int fir_size)
        }
        
        // These values could be configurable
-       catch_factor = 100000;
-       catch_factor2 = 10000;
-       pclamp = 15.0;
+       catch_factor = 20000;
+       catch_factor2 = 4000;
+       pclamp = 150.0;
        controlquant = 10000.0;
+       fir_empty = false;
 }
 
 PIController::~PIController ()
@@ -55,12 +56,22 @@ PIController::~PIController ()
 }
 
 double
-PIController::get_ratio (int fill_level)
+PIController::get_ratio (int fill_level, int period_size)
 {
        double offset = fill_level;
+       double this_catch_factor = catch_factor;
+       double this_catch_factor2 = catch_factor2 * 4096.0/(double)period_size;
+
        
        // Save offset.
-       offset_array[(offset_differential_index++) % smooth_size] = offset;
+       if( fir_empty ) {
+           for (int i = 0; i < smooth_size; i++) {
+                   offset_array[i] = offset;
+           }
+           fir_empty = false;
+       } else {
+           offset_array[(offset_differential_index++) % smooth_size] = offset;
+       }
         
        // Build the mean of the windowed offset array basically fir lowpassing.
        smooth_offset = 0.0;
@@ -72,24 +83,29 @@ PIController::get_ratio (int fill_level)
        // This is the integral of the smoothed_offset
        offset_integral += smooth_offset;
 
+       std::cerr << smooth_offset << " ";
        
        // Clamp offset : the smooth offset still contains unwanted noise which would go straigth onto the resample coeff.
        // It only used in the P component and the I component is used for the fine tuning anyways.
+    
        if (fabs(smooth_offset) < pclamp)
                 smooth_offset = 0.0;
        
+       smooth_offset += (static_resample_factor - resample_mean) * this_catch_factor;
+       
        // Ok, now this is the PI controller. 
        // u(t) = K * (e(t) + 1/T \int e(t') dt')
        // Kp = 1/catch_factor and T = catch_factor2  Ki = Kp/T 
        current_resample_factor 
-                = static_resample_factor - smooth_offset / catch_factor - offset_integral / catch_factor / catch_factor2;
+                = static_resample_factor - smooth_offset / this_catch_factor - offset_integral / this_catch_factor / this_catch_factor2;
        
        // Now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
        current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;
        
        // Calculate resample_mean so we can init ourselves to saner values.
        // resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
-       resample_mean = 0.9 * resample_mean + 0.1 * current_resample_factor;
+       resample_mean = (1.0-0.01) * resample_mean + 0.01 * current_resample_factor;
+       std::cerr << fill_level << " " << smooth_offset << " " << offset_integral << " " << current_resample_factor << " " << resample_mean << "\n";
        return current_resample_factor;
 }
         
@@ -105,4 +121,111 @@ PIController::out_of_bounds()
        for (i = 0; i < smooth_size; i++) {
                 offset_array[i] = 0.0;
        }
+       fir_empty = false;
+}
+
+
+PIChaser::PIChaser() {
+       pic = new PIController( 1.0, 16 );
+       array_index = 0;
+       for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
+           realtime_stamps[i] = 0;
+           chasetime_stamps[i] = 0;
+       }
+
+       speed_threshold = 0.2;
+       pos_threshold = 4000;
+       want_locate_val = 0;
+}
+
+void
+PIChaser::reset() {
+       array_index = 0;
+       for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
+           realtime_stamps[i] = 0;
+           chasetime_stamps[i] = 0;
+       }
+       pic->reset(1.0);
+}
+PIChaser::~PIChaser() {
+       delete pic;
+}
+
+double
+PIChaser::get_ratio(nframes64_t chasetime_measured, nframes64_t chasetime, nframes64_t slavetime_measured, nframes64_t slavetime, bool in_control, int period_size ) {
+
+       feed_estimator( chasetime_measured, chasetime );
+       std::cerr << (double)chasetime_measured/48000.0 << " " << chasetime << " " << slavetime << " ";
+       double crude = get_estimate();
+       double fine;  
+       nframes64_t massaged_chasetime = chasetime + (nframes64_t)( (double)(slavetime_measured - chasetime_measured) * crude );
+
+       fine = pic->get_ratio( slavetime - massaged_chasetime, period_size );
+       if (in_control) {
+           if (fabs(fine-crude) > crude*speed_threshold) {
+               std::cout << "reset to " << crude << " fine = " << fine << "\n";
+               pic->reset( crude );
+               speed = crude;
+           } else {
+               speed = fine;
+           }
+
+           if (abs(chasetime-slavetime) > pos_threshold) {
+               pic->reset( crude );
+               speed = crude;
+               want_locate_val = chasetime;
+               std::cout << "we are off by " << chasetime-slavetime << " want_locate:" << chasetime << "\n";
+           } else {
+               want_locate_val = 0;
+           }
+       } else {
+           std::cout << "not in control..." << crude << "\n";
+           speed = crude;
+           pic->reset( crude );
+       }
+       
+       return speed;
+}
+
+void
+PIChaser::feed_estimator( nframes64_t realtime, nframes64_t chasetime ) {
+       array_index += 1;
+       realtime_stamps [ array_index%ESTIMATOR_SIZE ] = realtime;
+       chasetime_stamps[ array_index%ESTIMATOR_SIZE ] = chasetime;
+}
+
+double
+PIChaser::get_estimate() {
+       double est = 0;
+       int num=0;
+       int i;
+       nframes64_t n1_realtime;
+       nframes64_t n1_chasetime;
+       for( i=(array_index + 1); i<=(array_index + ESTIMATOR_SIZE); i++ ) {
+           if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
+               n1_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
+               n1_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
+               i+=1;
+               break;
+           }
+       }
+
+       for( ; i<=(array_index + ESTIMATOR_SIZE); i++ ) {
+           if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
+               if( (realtime_stamps[(i)%ESTIMATOR_SIZE] - n1_realtime) > 200 ) {
+                   nframes64_t n_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
+                   nframes64_t n_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
+                   est += ((double)( n_chasetime - n1_chasetime ))
+                         / ((double)( n_realtime - n1_realtime ));
+                   n1_realtime = n_realtime;
+                   n1_chasetime = n_chasetime;
+                   num += 1;
+               }
+           }
+       }
+
+       if(num)
+           return est/(double)num;
+       else
+           return 0.0;
 }