update path to lua-doc in manual
[ardour.git] / libs / backends / dummy / dummy_audiobackend.cc
index 8acc08e71c5b7c3045a0fe45ef1f0baaba5842f5..28d73d462ed16f214676a62f8341b110852dc56c 100644 (file)
  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  */
 
+#include <math.h>
 #include <sys/time.h>
+#include <regex.h>
+#include <stdlib.h>
+
+#include <glibmm.h>
+
+#ifdef PLATFORM_WINDOWS
+#include <windows.h>
+#include <pbd/windows_timer_utils.h>
+#endif
+
 #include "dummy_audiobackend.h"
+#include "dummy_midi_seq.h"
+
 #include "pbd/error.h"
-#include "i18n.h"
+#include "ardour/port_manager.h"
+#include "pbd/i18n.h"
 
 using namespace ARDOUR;
 
 static std::string s_instance_name;
-DummyAudioBackend::DummyAudioBackend (AudioEngine& e)
-       : AudioBackend (e)
+size_t DummyAudioBackend::_max_buffer_size = 8192;
+std::vector<std::string> DummyAudioBackend::_midi_options;
+std::vector<AudioBackend::DeviceStatus> DummyAudioBackend::_device_status;
+
+std::vector<DummyAudioBackend::DriverSpeed> DummyAudioBackend::_driver_speed;
+
+static int64_t _x_get_monotonic_usec() {
+#ifdef PLATFORM_WINDOWS
+       return PBD::get_microseconds();
+#endif
+       return g_get_monotonic_time();
+}
+
+DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info)
+       : AudioBackend (e, info)
        , _running (false)
+       , _freewheel (false)
        , _freewheeling (false)
+       , _speedup (1.0)
+       , _device ("")
        , _samplerate (48000)
-       , _audio_buffersize (1024)
+       , _samples_per_period (1024)
        , _dsp_load (0)
        , _n_inputs (0)
        , _n_outputs (0)
+       , _n_midi_inputs (0)
+       , _n_midi_outputs (0)
+       , _midi_mode (MidiNoEvents)
        , _systemic_input_latency (0)
        , _systemic_output_latency (0)
        , _processed_samples (0)
+       , _port_change_flag (false)
 {
        _instance_name = s_instance_name;
+       _device = _("Silence");
+       pthread_mutex_init (&_port_callback_mutex, 0);
+
+       if (_driver_speed.empty()) {
+               _driver_speed.push_back (DriverSpeed (_("Half Speed"),   2.0f));
+               _driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f));
+               _driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f));
+               _driver_speed.push_back (DriverSpeed (_("5x Speed"),     0.2f));
+               _driver_speed.push_back (DriverSpeed (_("10x Speed"),    0.1f));
+               _driver_speed.push_back (DriverSpeed (_("15x Speed"),    0.06666f));
+               _driver_speed.push_back (DriverSpeed (_("20x Speed"),    0.05f));
+               _driver_speed.push_back (DriverSpeed (_("50x Speed"),    0.02f));
+       }
+
 }
 
 DummyAudioBackend::~DummyAudioBackend ()
 {
+       pthread_mutex_destroy (&_port_callback_mutex);
 }
 
 /* AUDIOBACKEND API */
@@ -50,7 +99,7 @@ DummyAudioBackend::~DummyAudioBackend ()
 std::string
 DummyAudioBackend::name () const
 {
-       return X_("Dummy");
+       return X_("Dummy"); // internal name
 }
 
 bool
@@ -62,17 +111,40 @@ DummyAudioBackend::is_realtime () const
 std::vector<AudioBackend::DeviceStatus>
 DummyAudioBackend::enumerate_devices () const
 {
-       std::vector<AudioBackend::DeviceStatus> s;
-       s.push_back (DeviceStatus (_("Dummy"), true));
-       return s;
+       if (_device_status.empty()) {
+               _device_status.push_back (DeviceStatus (_("Silence"), true));
+               _device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true));
+               _device_status.push_back (DeviceStatus (_("Demolition"), true));
+               _device_status.push_back (DeviceStatus (_("Sine Wave"), true));
+               _device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true));
+               _device_status.push_back (DeviceStatus (_("Square Wave"), true));
+               _device_status.push_back (DeviceStatus (_("Impulses"), true));
+               _device_status.push_back (DeviceStatus (_("Uniform White Noise"), true));
+               _device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true));
+               _device_status.push_back (DeviceStatus (_("Pink Noise"), true));
+               _device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true));
+               _device_status.push_back (DeviceStatus (_("Sine Sweep"), true));
+               _device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true));
+               _device_status.push_back (DeviceStatus (_("Square Sweep"), true));
+               _device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true));
+               _device_status.push_back (DeviceStatus (_("Loopback"), true));
+       }
+       return _device_status;
 }
 
 std::vector<float>
 DummyAudioBackend::available_sample_rates (const std::string&) const
 {
        std::vector<float> sr;
+       sr.push_back (8000.0);
+       sr.push_back (22050.0);
+       sr.push_back (24000.0);
        sr.push_back (44100.0);
        sr.push_back (48000.0);
+       sr.push_back (88200.0);
+       sr.push_back (96000.0);
+       sr.push_back (176400.0);
+       sr.push_back (192000.0);
        return sr;
 }
 
@@ -80,8 +152,18 @@ std::vector<uint32_t>
 DummyAudioBackend::available_buffer_sizes (const std::string&) const
 {
        std::vector<uint32_t> bs;
+       bs.push_back (4);
+       bs.push_back (8);
+       bs.push_back (16);
+       bs.push_back (32);
        bs.push_back (64);
+       bs.push_back (128);
+       bs.push_back (256);
+       bs.push_back (512);
        bs.push_back (1024);
+       bs.push_back (2048);
+       bs.push_back (4096);
+       bs.push_back (8192);
        return bs;
 }
 
@@ -109,9 +191,45 @@ DummyAudioBackend::can_change_buffer_size_when_running () const
        return true;
 }
 
+std::vector<std::string>
+DummyAudioBackend::enumerate_drivers () const
+{
+       std::vector<std::string> speed_drivers;
+       for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
+               speed_drivers.push_back (it->name);
+       }
+       return speed_drivers;
+}
+
+std::string
+DummyAudioBackend::driver_name () const
+{
+       for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
+               if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) {
+                       return it->name;
+               }
+       }
+       assert (0);
+       return _("Normal Speed");
+}
+
+int
+DummyAudioBackend::set_driver (const std::string& d)
+{
+       for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
+               if (d == it->name) {
+                       _speedup = it->speedup;
+                       return 0;
+               }
+       }
+       assert (0);
+       return -1;
+}
+
 int
-DummyAudioBackend::set_device_name (const std::string&)
+DummyAudioBackend::set_device_name (const std::string& d)
 {
+       _device = d;
        return 0;
 }
 
@@ -127,8 +245,32 @@ DummyAudioBackend::set_sample_rate (float sr)
 int
 DummyAudioBackend::set_buffer_size (uint32_t bs)
 {
-       return -1;
-       _audio_buffersize = bs;
+       if (bs <= 0 || bs > _max_buffer_size) {
+               return -1;
+       }
+       _samples_per_period = bs;
+
+       /* update port latencies
+        * with 'Loopback' there is exactly once cycle latency,
+        * divide it between In + Out;
+        */
+       LatencyRange lr;
+       lr.min = lr.max = _systemic_input_latency;
+       for (std::vector<DummyAudioPort*>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
+               set_latency_range (*it, false, lr);
+       }
+       for (std::vector<DummyMidiPort*>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
+               set_latency_range (*it, false, lr);
+       }
+
+       lr.min = lr.max = _systemic_output_latency;
+       for (std::vector<DummyAudioPort*>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
+               set_latency_range (*it, true, lr);
+       }
+       for (std::vector<DummyMidiPort*>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
+               set_latency_range (*it, true, lr);
+       }
+
        engine.buffer_size_change (bs);
        return 0;
 }
@@ -141,34 +283,38 @@ DummyAudioBackend::set_interleaved (bool yn)
 }
 
 int
-DummyAudioBackend::set_input_channels (uint32_t)
+DummyAudioBackend::set_input_channels (uint32_t cc)
 {
-       return -1;
+       _n_inputs = cc;
+       return 0;
 }
 
 int
-DummyAudioBackend::set_output_channels (uint32_t)
+DummyAudioBackend::set_output_channels (uint32_t cc)
 {
-       return -1;
+       _n_outputs = cc;
+       return 0;
 }
 
 int
-DummyAudioBackend::set_systemic_input_latency (uint32_t)
+DummyAudioBackend::set_systemic_input_latency (uint32_t sl)
 {
-       return -1;
+       _systemic_input_latency = sl;
+       return 0;
 }
 
 int
-DummyAudioBackend::set_systemic_output_latency (uint32_t)
+DummyAudioBackend::set_systemic_output_latency (uint32_t sl)
 {
-       return -1;
+       _systemic_output_latency = sl;
+       return 0;
 }
 
 /* Retrieving parameters */
 std::string
 DummyAudioBackend::device_name () const
 {
-       return _("Dummy Device");
+       return _device;
 }
 
 float
@@ -180,7 +326,7 @@ DummyAudioBackend::sample_rate () const
 uint32_t
 DummyAudioBackend::buffer_size () const
 {
-       return _audio_buffersize;
+       return _samples_per_period;
 }
 
 bool
@@ -192,46 +338,79 @@ DummyAudioBackend::interleaved () const
 uint32_t
 DummyAudioBackend::input_channels () const
 {
-       return 0;
+       return _n_inputs;
 }
 
 uint32_t
 DummyAudioBackend::output_channels () const
 {
-       return 0;
+       return _n_outputs;
 }
 
 uint32_t
 DummyAudioBackend::systemic_input_latency () const
 {
-       return 0;
+       return _systemic_input_latency;
 }
 
 uint32_t
 DummyAudioBackend::systemic_output_latency () const
 {
-       return 0;
+       return _systemic_output_latency;
 }
 
+
 /* MIDI */
 std::vector<std::string>
 DummyAudioBackend::enumerate_midi_options () const
 {
-       std::vector<std::string> m;
-       m.push_back (_("None"));
-       return m;
+       if (_midi_options.empty()) {
+               _midi_options.push_back (_("1 in, 1 out, Silence"));
+               _midi_options.push_back (_("2 in, 2 out, Silence"));
+               _midi_options.push_back (_("8 in, 8 out, Silence"));
+               _midi_options.push_back (_("Midi Event Generators"));
+               _midi_options.push_back (_("8 in, 8 out, Loopback"));
+               _midi_options.push_back (_("MIDI to Audio, Loopback"));
+               _midi_options.push_back (_("No MIDI I/O"));
+       }
+       return _midi_options;
 }
 
 int
-DummyAudioBackend::set_midi_option (const std::string&)
+DummyAudioBackend::set_midi_option (const std::string& opt)
 {
-       return -1;
+       _midi_mode = MidiNoEvents;
+       if (opt == _("1 in, 1 out, Silence")) {
+               _n_midi_inputs = _n_midi_outputs = 1;
+       }
+       else if (opt == _("2 in, 2 out, Silence")) {
+               _n_midi_inputs = _n_midi_outputs = 2;
+       }
+       else if (opt == _("8 in, 8 out, Silence")) {
+               _n_midi_inputs = _n_midi_outputs = 8;
+       }
+       else if (opt == _("Midi Event Generators")) {
+               _n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS;
+               _midi_mode = MidiGenerator;
+       }
+       else if (opt == _("8 in, 8 out, Loopback")) {
+               _n_midi_inputs = _n_midi_outputs = 8;
+               _midi_mode = MidiLoopback;
+       }
+       else if (opt == _("MIDI to Audio, Loopback")) {
+               _n_midi_inputs = _n_midi_outputs = UINT32_MAX;
+               _midi_mode = MidiToAudio;
+       }
+       else {
+               _n_midi_inputs = _n_midi_outputs = 0;
+       }
+       return 0;
 }
 
 std::string
 DummyAudioBackend::midi_option () const
 {
-       return "";
+       return ""; // TODO
 }
 
 /* State Control */
@@ -249,28 +428,57 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/)
 {
        if (_running) {
                PBD::error << _("DummyAudioBackend: already active.") << endmsg;
-               return -1;
-       }
-       if (pthread_create (&_main_thread, NULL, pthread_process, this)) {
-               PBD::error << _("DummyAudioBackend: cannot start.") << endmsg;
+               return BackendReinitializationError;
        }
 
-       int timeout = 5000;
-       while (!_running && --timeout > 0) { usleep (1000); }
+       if (_ports.size () || _portmap.size ()) {
+               PBD::warning << _("DummyAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg;
+               for (PortIndex::const_iterator it = _ports.begin (); it != _ports.end (); ++it) {
+                       PBD::info << _("DummyAudioBackend: port '") << (*it)->name () << "' exists." << endmsg;
+               }
+               for (PortMap::const_iterator it = _portmap.begin (); it != _portmap.end (); ++it) {
+                       PBD::info << _("DummyAudioBackend: portmap '") << (*it).first << "' exists." << endmsg;
+               }
+               _system_inputs.clear();
+               _system_outputs.clear();
+               _system_midi_in.clear();
+               _system_midi_out.clear();
+               _ports.clear();
+               _portmap.clear();
+       }
 
-       if (timeout == 0 || !_running) {
-               PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg;
-               return -1;
+       if (register_system_ports()) {
+               PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg;
+               return PortRegistrationError;
        }
 
+       engine.sample_rate_change (_samplerate);
+       engine.buffer_size_change (_samples_per_period);
+
+       _dsp_load_calc.set_max_time (_samplerate, _samples_per_period);
+
        if (engine.reestablish_ports ()) {
                PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg;
                stop ();
-               return -1;
+               return PortReconnectError;
        }
 
        engine.reconnect_ports ();
-       return 0;
+       _port_change_flag = false;
+
+       if (pthread_create (&_main_thread, NULL, pthread_process, this)) {
+               PBD::error << _("DummyAudioBackend: cannot start.") << endmsg;
+       }
+
+       int timeout = 5000;
+       while (!_running && --timeout > 0) { Glib::usleep (1000); }
+
+       if (timeout == 0 || !_running) {
+               PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg;
+               return ProcessThreadStartError;
+       }
+
+       return NoError;
 }
 
 int
@@ -278,7 +486,7 @@ DummyAudioBackend::stop ()
 {
        void *status;
        if (!_running) {
-               return -1;
+               return 0;
        }
 
        _running = false;
@@ -286,17 +494,14 @@ DummyAudioBackend::stop ()
                PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg;
                return -1;
        }
+       unregister_ports();
        return 0;
 }
 
 int
 DummyAudioBackend::freewheel (bool onoff)
 {
-       if (onoff != _freewheeling) {
-               return 0;
-       }
        _freewheeling = onoff;
-       engine.freewheel_callback (onoff);
        return 0;
 }
 
@@ -309,17 +514,23 @@ DummyAudioBackend::dsp_load () const
 size_t
 DummyAudioBackend::raw_buffer_size (DataType t)
 {
+       switch (t) {
+               case DataType::AUDIO:
+                       return _samples_per_period * sizeof(Sample);
+               case DataType::MIDI:
+                       return _max_buffer_size; // XXX not really limited
+       }
        return 0;
 }
 
 /* Process time */
-pframes_t
+framepos_t
 DummyAudioBackend::sample_time ()
 {
        return _processed_samples;
 }
 
-pframes_t
+framepos_t
 DummyAudioBackend::sample_time_at_cycle_start ()
 {
        return _processed_samples;
@@ -355,8 +566,10 @@ DummyAudioBackend::create_process_thread (boost::function<void()> func)
 
        if (pthread_create (&thread_id, &attr, dummy_process_thread, td)) {
                PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
+               pthread_attr_destroy (&attr);
                return -1;
        }
+       pthread_attr_destroy (&attr);
 
        _threads.push_back (thread_id);
        return 0;
@@ -382,17 +595,15 @@ DummyAudioBackend::join_process_threads ()
 bool
 DummyAudioBackend::in_process_thread ()
 {
+       if (pthread_equal (_main_thread, pthread_self()) != 0) {
+               return true;
+       }
+
        for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
        {
-#ifdef COMPILER_MINGW
-               if (*i == GetCurrentThread ()) {
-                       return true;
-               }
-#else // pthreads
                if (pthread_equal (*i, pthread_self ()) != 0) {
                        return true;
                }
-#endif
        }
        return false;
 }
@@ -406,6 +617,8 @@ DummyAudioBackend::process_thread_count ()
 void
 DummyAudioBackend::update_latencies ()
 {
+       // trigger latency callback in RT thread (locked graph)
+       port_connect_add_remove_callback();
 }
 
 /* PORTENGINE API */
@@ -435,130 +648,491 @@ DummyAudioBackend::port_name_size () const
 }
 
 int
-DummyAudioBackend::set_port_name (PortEngine::PortHandle, const std::string&)
+DummyAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name)
 {
-       return -1;
+       std::string newname (_instance_name + ":" + name);
+
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::set_port_name: Invalid Port(s)") << endmsg;
+               return -1;
+       }
+
+       if (find_port (newname)) {
+               PBD::error << _("DummyBackend::set_port_name: Port with given name already exists") << endmsg;
+               return -1;
+       }
+
+       DummyPort* p = static_cast<DummyPort*>(port);
+       _portmap.erase (p->name());
+       _portmap.insert (make_pair (newname, p));
+       return p->set_name (newname);
 }
 
 std::string
-DummyAudioBackend::get_port_name (PortEngine::PortHandle) const
+DummyAudioBackend::get_port_name (PortEngine::PortHandle port) const
+{
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::get_port_name: Invalid Port(s)") << endmsg;
+               return std::string ();
+       }
+       return static_cast<DummyPort*>(port)->name ();
+}
+
+int
+DummyAudioBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const
+{
+       if (!valid_port (port)) {
+               PBD::warning << _("DummyBackend::get_port_property: Invalid Port(s)") << endmsg;
+               return -1;
+       }
+       if (key == "http://jackaudio.org/metadata/pretty-name") {
+               type = "";
+               value = static_cast<DummyPort*>(port)->pretty_name ();
+               if (!value.empty()) {
+                       return 0;
+               }
+       }
+       return -1;
+}
+
+int
+DummyAudioBackend::set_port_property (PortHandle port, const std::string& key, const std::string& value, const std::string& type)
 {
-       return "port:XXX";
+       if (!valid_port (port)) {
+               PBD::warning << _("DummyBackend::set_port_property: Invalid Port(s)") << endmsg;
+               return -1;
+       }
+       if (key == "http://jackaudio.org/metadata/pretty-name" && type.empty ()) {
+               static_cast<DummyPort*>(port)->set_pretty_name (value);
+               return 0;
+       }
+       return -1;
 }
 
 PortEngine::PortHandle
-DummyAudioBackend::get_port_by_name (const std::string&) const
+DummyAudioBackend::get_port_by_name (const std::string& name) const
 {
-       PortEngine::PortHandle port_handle = 0;
-       return port_handle;
+       PortHandle port = (PortHandle) find_port (name);
+       return port;
 }
 
 int
 DummyAudioBackend::get_ports (
                const std::string& port_name_pattern,
                DataType type, PortFlags flags,
-               std::vector<std::string>&) const
+               std::vector<std::string>& port_names) const
 {
-       return 0;
+       int rv = 0;
+       regex_t port_regex;
+       bool use_regexp = false;
+       if (port_name_pattern.size () > 0) {
+               if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED|REG_NOSUB)) {
+                       use_regexp = true;
+               }
+       }
+
+       for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
+               DummyPort* port = *i;
+               if ((port->type () == type) && flags == (port->flags () & flags)) {
+                       if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) {
+                               port_names.push_back (port->name ());
+                               ++rv;
+                       }
+               }
+       }
+       if (use_regexp) {
+               regfree (&port_regex);
+       }
+       return rv;
 }
 
 DataType
-DummyAudioBackend::port_data_type (PortEngine::PortHandle) const
+DummyAudioBackend::port_data_type (PortEngine::PortHandle port) const
 {
-       return DataType::AUDIO;
+       if (!valid_port (port)) {
+               return DataType::NIL;
+       }
+       return static_cast<DummyPort*>(port)->type ();
 }
 
 PortEngine::PortHandle
 DummyAudioBackend::register_port (
-               const std::string&,
-               ARDOUR::DataType,
-               ARDOUR::PortFlags)
+               const std::string& name,
+               ARDOUR::DataType type,
+               ARDOUR::PortFlags flags)
 {
-       PortEngine::PortHandle port_handle = 0;
-       return port_handle;
+       if (name.size () == 0) { return 0; }
+       if (flags & IsPhysical) { return 0; }
+       if (!_running) {
+               PBD::info << _("DummyBackend::register_port: Engine is not running.") << endmsg;
+       }
+       return add_port (_instance_name + ":" + name, type, flags);
+}
+
+PortEngine::PortHandle
+DummyAudioBackend::add_port (
+               const std::string& name,
+               ARDOUR::DataType type,
+               ARDOUR::PortFlags flags)
+{
+       assert(name.size ());
+       if (find_port (name)) {
+               PBD::error << _("DummyBackend::register_port: Port already exists:")
+                               << " (" << name << ")" << endmsg;
+               return 0;
+       }
+       DummyPort* port = NULL;
+       switch (type) {
+               case DataType::AUDIO:
+                       port = new DummyAudioPort (*this, name, flags);
+                       break;
+               case DataType::MIDI:
+                       port = new DummyMidiPort (*this, name, flags);
+                       break;
+               default:
+                       PBD::error << _("DummyBackend::register_port: Invalid Data Type.") << endmsg;
+                       return 0;
+       }
+
+       _ports.insert (port);
+       _portmap.insert (make_pair (name, port));
+
+       return port;
 }
 
 void
-DummyAudioBackend::unregister_port (PortEngine::PortHandle)
+DummyAudioBackend::unregister_port (PortEngine::PortHandle port_handle)
 {
+       if (!_running) {
+               PBD::info << _("DummyBackend::unregister_port: Engine is not running.") << endmsg;
+               assert (!valid_port (port_handle));
+               return;
+       }
+       DummyPort* port = static_cast<DummyPort*>(port_handle);
+       PortIndex::iterator i = std::find (_ports.begin(), _ports.end(), static_cast<DummyPort*>(port_handle));
+       if (i == _ports.end ()) {
+               PBD::error << _("DummyBackend::unregister_port: Failed to find port") << endmsg;
+               return;
+       }
+       disconnect_all(port_handle);
+       _portmap.erase (port->name());
+       _ports.erase (i);
+       delete port;
+}
+
+int
+DummyAudioBackend::register_system_ports()
+{
+       LatencyRange lr;
+       enum DummyAudioPort::GeneratorType gt;
+       if (_device == _("Uniform White Noise")) {
+               gt = DummyAudioPort::UniformWhiteNoise;
+       } else if (_device == _("Gaussian White Noise")) {
+               gt = DummyAudioPort::GaussianWhiteNoise;
+       } else if (_device == _("Pink Noise")) {
+               gt = DummyAudioPort::PinkNoise;
+       } else if (_device == _("Pink Noise (low CPU)")) {
+               gt = DummyAudioPort::PonyNoise;
+       } else if (_device == _("Sine Wave")) {
+               gt = DummyAudioPort::SineWave;
+       } else if (_device == _("Sine Wave 1K, 1/3 Oct")) {
+               gt = DummyAudioPort::SineWaveOctaves;
+       } else if (_device == _("Square Wave")) {
+               gt = DummyAudioPort::SquareWave;
+       } else if (_device == _("Impulses")) {
+               gt = DummyAudioPort::KronekerDelta;
+       } else if (_device == _("Sine Sweep")) {
+               gt = DummyAudioPort::SineSweep;
+       } else if (_device == _("Sine Sweep Swell")) {
+               gt = DummyAudioPort::SineSweepSwell;
+       } else if (_device == _("Square Sweep")) {
+               gt = DummyAudioPort::SquareSweep;
+       } else if (_device == _("Square Sweep Swell")) {
+               gt = DummyAudioPort::SquareSweepSwell;
+       } else if (_device == _("Loopback")) {
+               gt = DummyAudioPort::Loopback;
+       } else if (_device == _("Demolition")) {
+               gt = DummyAudioPort::Demolition;
+       } else if (_device == _("DC -6dBFS (+.5)")) {
+               gt = DummyAudioPort::DC05;
+       } else {
+               gt = DummyAudioPort::Silence;
+       }
+
+       if (_midi_mode == MidiToAudio) {
+               gt = DummyAudioPort::Loopback;
+       }
+
+       const int a_ins = _n_inputs > 0 ? _n_inputs : 8;
+       const int a_out = _n_outputs > 0 ? _n_outputs : 8;
+       const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs;
+       const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs;
+
+
+       /* audio ports */
+       lr.min = lr.max = _systemic_input_latency;
+       for (int i = 1; i <= a_ins; ++i) {
+               char tmp[64];
+               snprintf(tmp, sizeof(tmp), "system:capture_%d", i);
+               PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
+               if (!p) return -1;
+               set_latency_range (p, false, lr);
+               _system_inputs.push_back (static_cast<DummyAudioPort*>(p));
+               std::string name = static_cast<DummyAudioPort*>(p)->setup_generator (gt, _samplerate, i - 1, a_ins);
+               if (!name.empty ()) {
+                       static_cast<DummyAudioPort*>(p)->set_pretty_name (name);
+               }
+       }
+
+       lr.min = lr.max = _systemic_output_latency;
+       for (int i = 1; i <= a_out; ++i) {
+               char tmp[64];
+               snprintf(tmp, sizeof(tmp), "system:playback_%d", i);
+               PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
+               if (!p) return -1;
+               set_latency_range (p, true, lr);
+               _system_outputs.push_back (static_cast<DummyAudioPort*>(p));
+       }
+
+       /* midi ports */
+       lr.min = lr.max = _systemic_input_latency;
+       for (int i = 0; i < m_ins; ++i) {
+               char tmp[64];
+               snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i+1);
+               PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
+               if (!p) return -1;
+               set_latency_range (p, false, lr);
+               _system_midi_in.push_back (static_cast<DummyMidiPort*>(p));
+               if (_midi_mode == MidiGenerator) {
+                       std::string name = static_cast<DummyMidiPort*>(p)->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate);
+                       if (!name.empty ()) {
+                               static_cast<DummyMidiPort*>(p)->set_pretty_name (name);
+                       }
+               }
+       }
+
+       lr.min = lr.max = _systemic_output_latency;
+       for (int i = 1; i <= m_out; ++i) {
+               char tmp[64];
+               snprintf(tmp, sizeof(tmp), "system:midi_playback_%d", i);
+               PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
+               if (!p) return -1;
+               set_latency_range (p, true, lr);
+               _system_midi_out.push_back (static_cast<DummyMidiPort*>(p));
+
+               if (_device == _("Loopback") && _midi_mode == MidiToAudio) {
+                       std::stringstream ss;
+                       ss << "Midi2Audio";
+                       for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) {
+                               if ((apc % m_out) + 1 == i) {
+                                       ss << " >" << (apc + 1);
+                               }
+                       }
+                       static_cast<DummyMidiPort*>(p)->set_pretty_name (ss.str());
+               }
+       }
+       return 0;
+}
+
+void
+DummyAudioBackend::unregister_ports (bool system_only)
+{
+       _system_inputs.clear();
+       _system_outputs.clear();
+       _system_midi_in.clear();
+       _system_midi_out.clear();
+
+       for (PortIndex::iterator i = _ports.begin (); i != _ports.end ();) {
+               PortIndex::iterator cur = i++;
+               DummyPort* port = *cur;
+               if (! system_only || (port->is_physical () && port->is_terminal ())) {
+                       port->disconnect_all ();
+                       _portmap.erase (port->name());
+                       delete port;
+                       _ports.erase (cur);
+               }
+       }
 }
 
 int
 DummyAudioBackend::connect (const std::string& src, const std::string& dst)
 {
-       return -1;
+       DummyPort* src_port = find_port (src);
+       DummyPort* dst_port = find_port (dst);
+
+       if (!src_port) {
+               PBD::error << _("DummyBackend::connect: Invalid Source port:")
+                               << " (" << src <<")" << endmsg;
+               return -1;
+       }
+       if (!dst_port) {
+               PBD::error << _("DummyBackend::connect: Invalid Destination port:")
+                       << " (" << dst <<")" << endmsg;
+               return -1;
+       }
+       return src_port->connect (dst_port);
 }
 
 int
 DummyAudioBackend::disconnect (const std::string& src, const std::string& dst)
 {
-       return -1;
+       DummyPort* src_port = find_port (src);
+       DummyPort* dst_port = find_port (dst);
+
+       if (!src_port || !dst_port) {
+               PBD::error << _("DummyBackend::disconnect: Invalid Port(s)") << endmsg;
+               return -1;
+       }
+       return src_port->disconnect (dst_port);
 }
 
 int
-DummyAudioBackend::connect (PortEngine::PortHandle, const std::string&)
+DummyAudioBackend::connect (PortEngine::PortHandle src, const std::string& dst)
 {
-       return -1;
+       DummyPort* dst_port = find_port (dst);
+       if (!valid_port (src)) {
+               PBD::error << _("DummyBackend::connect: Invalid Source Port Handle") << endmsg;
+               return -1;
+       }
+       if (!dst_port) {
+               PBD::error << _("DummyBackend::connect: Invalid Destination Port")
+                       << " (" << dst << ")" << endmsg;
+               return -1;
+       }
+       return static_cast<DummyPort*>(src)->connect (dst_port);
 }
 
 int
-DummyAudioBackend::disconnect (PortEngine::PortHandle, const std::string&)
+DummyAudioBackend::disconnect (PortEngine::PortHandle src, const std::string& dst)
 {
-       return -1;
+       DummyPort* dst_port = find_port (dst);
+       if (!valid_port (src) || !dst_port) {
+               PBD::error << _("DummyBackend::disconnect: Invalid Port(s)") << endmsg;
+               return -1;
+       }
+       return static_cast<DummyPort*>(src)->disconnect (dst_port);
 }
 
 int
-DummyAudioBackend::disconnect_all (PortEngine::PortHandle)
+DummyAudioBackend::disconnect_all (PortEngine::PortHandle port)
 {
-       return -1;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::disconnect_all: Invalid Port") << endmsg;
+               return -1;
+       }
+       static_cast<DummyPort*>(port)->disconnect_all ();
+       return 0;
 }
 
 bool
-DummyAudioBackend::connected (PortEngine::PortHandle, bool process_callback_safe)
+DummyAudioBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/)
 {
-       return false;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::disconnect_all: Invalid Port") << endmsg;
+               return false;
+       }
+       return static_cast<DummyPort*>(port)->is_connected ();
 }
 
 bool
-DummyAudioBackend::connected_to (PortEngine::PortHandle, const std::string&, bool process_callback_safe)
+DummyAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/)
 {
-       return false;
+       DummyPort* dst_port = find_port (dst);
+#ifndef NDEBUG
+       if (!valid_port (src) || !dst_port) {
+               PBD::error << _("DummyBackend::connected_to: Invalid Port") << endmsg;
+               return false;
+       }
+#endif
+       return static_cast<DummyPort*>(src)->is_connected (dst_port);
 }
 
 bool
-DummyAudioBackend::physically_connected (PortEngine::PortHandle, bool process_callback_safe)
+DummyAudioBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/)
 {
-       return false;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::physically_connected: Invalid Port") << endmsg;
+               return false;
+       }
+       return static_cast<DummyPort*>(port)->is_physically_connected ();
 }
 
 int
-DummyAudioBackend::get_connections (PortEngine::PortHandle, std::vector<std::string>&, bool process_callback_safe)
+DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector<std::string>& names, bool /*process_callback_safe*/)
 {
-       return false;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyBackend::get_connections: Invalid Port") << endmsg;
+               return -1;
+       }
+
+       assert (0 == names.size ());
+
+       const std::set<DummyPort*>& connected_ports = static_cast<DummyPort*>(port)->get_connections ();
+
+       for (std::set<DummyPort*>::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) {
+               names.push_back ((*i)->name ());
+       }
+
+       return (int)names.size ();
 }
 
 /* MIDI */
 int
-DummyAudioBackend::midi_event_get (pframes_t& timestamp, size_t& size, uint8_t** buf, void* port_buffer, uint32_t event_index)
-{
-       return -1;
+DummyAudioBackend::midi_event_get (
+               pframes_t& timestamp,
+               size_t& size, uint8_t** buf, void* port_buffer,
+               uint32_t event_index)
+{
+       assert (buf && port_buffer);
+       DummyMidiBuffer& source = * static_cast<DummyMidiBuffer*>(port_buffer);
+       if (event_index >= source.size ()) {
+               return -1;
+       }
+       DummyMidiEvent * const event = source[event_index].get ();
+
+       timestamp = event->timestamp ();
+       size = event->size ();
+       *buf = event->data ();
+       return 0;
 }
 
 int
-DummyAudioBackend::midi_event_put (void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size)
-{
-       return -1;
+DummyAudioBackend::midi_event_put (
+               void* port_buffer,
+               pframes_t timestamp,
+               const uint8_t* buffer, size_t size)
+{
+       assert (buffer && port_buffer);
+       DummyMidiBuffer& dst = * static_cast<DummyMidiBuffer*>(port_buffer);
+       if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) {
+               // nevermind, ::get_buffer() sorts events, but always print warning
+               fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp);
+       }
+       dst.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (timestamp, buffer, size)));
+#if 0 // DEBUG MIDI EVENTS
+       printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size);
+       for (size_t xx = 0; xx < size; ++xx) {
+               printf(" %02x", buffer[xx]);
+       }
+       printf("\n");
+#endif
+       return 0;
 }
 
 uint32_t
 DummyAudioBackend::get_midi_event_count (void* port_buffer)
 {
-       return -1;
+       assert (port_buffer);
+       return static_cast<DummyMidiBuffer*>(port_buffer)->size ();
 }
 
 void
 DummyAudioBackend::midi_clear (void* port_buffer)
 {
+       assert (port_buffer);
+       DummyMidiBuffer * buf = static_cast<DummyMidiBuffer*>(port_buffer);
+       assert (buf);
+       buf->clear ();
 }
 
 /* Monitoring */
@@ -590,60 +1164,129 @@ DummyAudioBackend::monitoring_input (PortEngine::PortHandle)
 /* Latency management */
 
 void
-DummyAudioBackend::set_latency_range (PortEngine::PortHandle, bool for_playback, LatencyRange)
+DummyAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range)
 {
+       if (!valid_port (port)) {
+               PBD::error << _("DummyPort::set_latency_range (): invalid port.") << endmsg;
+       }
+       static_cast<DummyPort*>(port)->set_latency_range (latency_range, for_playback);
 }
 
 LatencyRange
-DummyAudioBackend::get_latency_range (PortEngine::PortHandle, bool for_playback)
+DummyAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback)
 {
        LatencyRange r;
-       r.min = 0;
-       r.max = 0;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg;
+               r.min = 0;
+               r.max = 0;
+               return r;
+       }
+       DummyPort *p =  static_cast<DummyPort*>(port);
+       assert(p);
+
+       r = p->latency_range (for_playback);
+       if (p->is_physical() && p->is_terminal()) {
+               if (p->is_input() && for_playback) {
+                       const size_t l_in = _samples_per_period * .25;
+                       r.min += l_in;
+                       r.max += l_in;
+               }
+               if (p->is_output() && !for_playback) {
+                       /* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */
+                       const size_t l_in = _samples_per_period * .25;
+                       const size_t l_out = _samples_per_period - l_in;
+                       r.min += l_out;
+                       r.max += l_out;
+               }
+       }
        return r;
 }
 
 /* Discovering physical ports */
 
 bool
-DummyAudioBackend::port_is_physical (PortEngine::PortHandle) const
+DummyAudioBackend::port_is_physical (PortEngine::PortHandle port) const
 {
-       return false;
+       if (!valid_port (port)) {
+               PBD::error << _("DummyPort::port_is_physical (): invalid port.") << endmsg;
+               return false;
+       }
+       return static_cast<DummyPort*>(port)->is_physical ();
 }
 
 void
-DummyAudioBackend::get_physical_outputs (DataType type, std::vector<std::string>&)
+DummyAudioBackend::get_physical_outputs (DataType type, std::vector<std::string>& port_names)
 {
+       for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) {
+               DummyPort* port = *i;
+               if ((port->type () == type) && port->is_input () && port->is_physical ()) {
+                       port_names.push_back (port->name ());
+               }
+       }
 }
 
 void
-DummyAudioBackend::get_physical_inputs (DataType type, std::vector<std::string>&)
+DummyAudioBackend::get_physical_inputs (DataType type, std::vector<std::string>& port_names)
 {
+       for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) {
+               DummyPort* port = *i;
+               if ((port->type () == type) && port->is_output () && port->is_physical ()) {
+                       port_names.push_back (port->name ());
+               }
+       }
 }
 
 ChanCount
 DummyAudioBackend::n_physical_outputs () const
 {
+       int n_midi = 0;
+       int n_audio = 0;
+       for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
+               DummyPort* port = *i;
+               if (port->is_output () && port->is_physical ()) {
+                       switch (port->type ()) {
+                               case DataType::AUDIO: ++n_audio; break;
+                               case DataType::MIDI: ++n_midi; break;
+                               default: break;
+                       }
+               }
+       }
        ChanCount cc;
-       cc.set (DataType::AUDIO, 0);
-       cc.set (DataType::MIDI, 0);
+       cc.set (DataType::AUDIO, n_audio);
+       cc.set (DataType::MIDI, n_midi);
        return cc;
 }
 
 ChanCount
 DummyAudioBackend::n_physical_inputs () const
 {
+       int n_midi = 0;
+       int n_audio = 0;
+       for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
+               DummyPort* port = *i;
+               if (port->is_input () && port->is_physical ()) {
+                       switch (port->type ()) {
+                               case DataType::AUDIO: ++n_audio; break;
+                               case DataType::MIDI: ++n_midi; break;
+                               default: break;
+                       }
+               }
+       }
        ChanCount cc;
-       cc.set (DataType::AUDIO, 0);
-       cc.set (DataType::MIDI, 0);
+       cc.set (DataType::AUDIO, n_audio);
+       cc.set (DataType::MIDI, n_midi);
        return cc;
 }
 
 /* Getting access to the data buffer for a port */
 
 void*
-DummyAudioBackend::get_buffer (PortEngine::PortHandle, pframes_t)
+DummyAudioBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes)
 {
+       assert (port);
+       assert (valid_port (port));
+       return static_cast<DummyPort*>(port)->get_buffer (nframes);
 }
 
 /* Engine Process */
@@ -654,42 +1297,139 @@ DummyAudioBackend::main_process_thread ()
        _running = true;
        _processed_samples = 0;
 
-       struct timeval clock1, clock2;
-       ::gettimeofday (&clock1, NULL);
+       manager.registration_callback();
+       manager.graph_order_callback();
+
+       int64_t clock1;
+       clock1 = -1;
        while (_running) {
-               if (engine.process_callback (_audio_buffersize)) {
+
+               if (_freewheeling != _freewheel) {
+                       _freewheel = _freewheeling;
+                       engine.freewheel_callback (_freewheel);
+               }
+
+               // re-set input buffers, generate on demand.
+               for (std::vector<DummyAudioPort*>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
+                       (*it)->next_period();
+               }
+               for (std::vector<DummyMidiPort*>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
+                       (*it)->next_period();
+               }
+
+               if (engine.process_callback (_samples_per_period)) {
                        return 0;
                }
-               _processed_samples += _audio_buffersize;
-               if (!_freewheeling) {
-                       ::gettimeofday (&clock2, NULL);
-                       const int elapsed_time = (clock2.tv_sec - clock1.tv_sec) * 1000000 + (clock2.tv_usec - clock1.tv_usec);
-                       const int nomial_time = 1000000 * _audio_buffersize / _samplerate;
-                       _dsp_load = elapsed_time / (float) nomial_time;
-                       if (elapsed_time < nomial_time) {
-                               ::usleep (nomial_time - elapsed_time);
+               _processed_samples += _samples_per_period;
+
+               if (_device == _("Loopback") && _midi_mode != MidiToAudio) {
+                       int opn = 0;
+                       int opc = _system_outputs.size();
+                       for (std::vector<DummyAudioPort*>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
+                               DummyAudioPort* op = _system_outputs[(opn % opc)];
+                               (*it)->fill_wavetable ((const float*)op->get_buffer (_samples_per_period), _samples_per_period);
+                       }
+               }
+
+               if (_midi_mode == MidiLoopback) {
+                       int opn = 0;
+                       int opc = _system_midi_out.size();
+                       for (std::vector<DummyMidiPort*>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) {
+                               DummyMidiPort* op = _system_midi_out[(opn % opc)];
+                               op->get_buffer(0); // mix-down
+                               (*it)->set_loopback (op->const_buffer());
+                       }
+               }
+               else if (_midi_mode == MidiToAudio) {
+                       int opn = 0;
+                       int opc = _system_midi_out.size();
+                       for (std::vector<DummyAudioPort*>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
+                               DummyMidiPort* op = _system_midi_out[(opn % opc)];
+                               op->get_buffer(0); // mix-down
+                               (*it)->midi_to_wavetable (op->const_buffer(), _samples_per_period);
+                       }
+               }
+
+               if (!_freewheel) {
+                       _dsp_load_calc.set_start_timestamp_us (clock1);
+                       _dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec());
+                       _dsp_load = _dsp_load_calc.get_dsp_load_unbound ();
+
+                       const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us ();
+                       const int64_t nominal_time = _dsp_load_calc.get_max_time_us ();
+                       if (elapsed_time < nominal_time) {
+                               const int64_t sleepy = _speedup * (nominal_time - elapsed_time);
+                               Glib::usleep (std::max ((int64_t) 100, sleepy));
                        } else {
-                               ::usleep (100); // don't hog cpu
+                               Glib::usleep (100); // don't hog cpu
                        }
                } else {
-                       _dsp_load = 1.0;
-                       ::usleep (100); // don't hog cpu
+                       _dsp_load = 1.0f;
+                       Glib::usleep (100); // don't hog cpu
+               }
+
+               /* beginning of next cycle */
+               clock1 = _x_get_monotonic_usec();
+
+               bool connections_changed = false;
+               bool ports_changed = false;
+               if (!pthread_mutex_trylock (&_port_callback_mutex)) {
+                       if (_port_change_flag) {
+                               ports_changed = true;
+                               _port_change_flag = false;
+                       }
+                       if (!_port_connection_queue.empty ()) {
+                               connections_changed = true;
+                       }
+                       while (!_port_connection_queue.empty ()) {
+                               PortConnectData *c = _port_connection_queue.back ();
+                               manager.connect_callback (c->a, c->b, c->c);
+                               _port_connection_queue.pop_back ();
+                               delete c;
+                       }
+                       pthread_mutex_unlock (&_port_callback_mutex);
+               }
+               if (ports_changed) {
+                       manager.registration_callback();
+               }
+               if (connections_changed) {
+                       manager.graph_order_callback();
+               }
+               if (connections_changed || ports_changed) {
+                       engine.latency_callback(false);
+                       engine.latency_callback(true);
                }
-               ::gettimeofday (&clock1, NULL);
+
        }
        _running = false;
        return 0;
 }
 
+
 /******************************************************************************/
 
 static boost::shared_ptr<DummyAudioBackend> _instance;
 
+static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
+static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
+static int deinstantiate ();
+static bool already_configured ();
+static bool available ();
+
+static ARDOUR::AudioBackendInfo _descriptor = {
+       _("None (Dummy)"),
+       instantiate,
+       deinstantiate,
+       backend_factory,
+       already_configured,
+       available
+};
+
 static boost::shared_ptr<AudioBackend>
 backend_factory (AudioEngine& e)
 {
        if (!_instance) {
-               _instance.reset (new DummyAudioBackend (e));
+               _instance.reset (new DummyAudioBackend (e, _descriptor));
        }
        return _instance;
 }
@@ -711,18 +1451,720 @@ deinstantiate ()
 static bool
 already_configured ()
 {
+       // special-case: unit-tests require backend to be pre-configured.
+       if (s_instance_name == "Unit-Test") {
+               return true;
+       }
        return false;
 }
 
-static ARDOUR::AudioBackendInfo _descriptor = {
-       "Dummy",
-       instantiate,
-       deinstantiate,
-       backend_factory,
-       already_configured,
-};
+static bool
+available ()
+{
+       return true;
+}
 
 extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
 {
        return &_descriptor;
 }
+
+
+/******************************************************************************/
+DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
+       : _dummy_backend (b)
+       , _name  (name)
+       , _flags (flags)
+       , _rseed (0)
+       , _gen_cycle (false)
+{
+       _capture_latency_range.min = 0;
+       _capture_latency_range.max = 0;
+       _playback_latency_range.min = 0;
+       _playback_latency_range.max = 0;
+       _dummy_backend.port_connect_add_remove_callback();
+}
+
+DummyPort::~DummyPort () {
+       disconnect_all ();
+       _dummy_backend.port_connect_add_remove_callback();
+}
+
+
+int DummyPort::connect (DummyPort *port)
+{
+       if (!port) {
+               PBD::error << _("DummyPort::connect (): invalid (null) port") << endmsg;
+               return -1;
+       }
+
+       if (type () != port->type ()) {
+               PBD::error << _("DummyPort::connect (): wrong port-type") << endmsg;
+               return -1;
+       }
+
+       if (is_output () && port->is_output ()) {
+               PBD::error << _("DummyPort::connect (): cannot inter-connect output ports.") << endmsg;
+               return -1;
+       }
+
+       if (is_input () && port->is_input ()) {
+               PBD::error << _("DummyPort::connect (): cannot inter-connect input ports.") << endmsg;
+               return -1;
+       }
+
+       if (this == port) {
+               PBD::error << _("DummyPort::connect (): cannot self-connect ports.") << endmsg;
+               return -1;
+       }
+
+       if (is_connected (port)) {
+#if 0 // don't bother to warn about this for now. just ignore it
+               PBD::error << _("DummyPort::connect (): ports are already connected:")
+                       << " (" << name () << ") -> (" << port->name () << ")"
+                       << endmsg;
+#endif
+               return -1;
+       }
+
+       _connect (port, true);
+       return 0;
+}
+
+
+void DummyPort::_connect (DummyPort *port, bool callback)
+{
+       _connections.insert (port);
+       if (callback) {
+               port->_connect (this, false);
+               _dummy_backend.port_connect_callback (name(),  port->name(), true);
+       }
+}
+
+int DummyPort::disconnect (DummyPort *port)
+{
+       if (!port) {
+               PBD::error << _("DummyPort::disconnect (): invalid (null) port") << endmsg;
+               return -1;
+       }
+
+       if (!is_connected (port)) {
+               PBD::error << _("DummyPort::disconnect (): ports are not connected:")
+                       << " (" << name () << ") -> (" << port->name () << ")"
+                       << endmsg;
+               return -1;
+       }
+       _disconnect (port, true);
+       return 0;
+}
+
+void DummyPort::_disconnect (DummyPort *port, bool callback)
+{
+       std::set<DummyPort*>::iterator it = _connections.find (port);
+       assert (it != _connections.end ());
+       _connections.erase (it);
+       if (callback) {
+               port->_disconnect (this, false);
+               _dummy_backend.port_connect_callback (name(),  port->name(), false);
+       }
+}
+
+
+void DummyPort::disconnect_all ()
+{
+       while (!_connections.empty ()) {
+               std::set<DummyPort*>::iterator it = _connections.begin ();
+               (*it)->_disconnect (this, false);
+               _dummy_backend.port_connect_callback (name(), (*it)->name(), false);
+               _connections.erase (it);
+       }
+}
+
+bool
+DummyPort::is_connected (const DummyPort *port) const
+{
+       return _connections.find (const_cast<DummyPort *>(port)) != _connections.end ();
+}
+
+bool DummyPort::is_physically_connected () const
+{
+       for (std::set<DummyPort*>::const_iterator it = _connections.begin (); it != _connections.end (); ++it) {
+               if ((*it)->is_physical ()) {
+                       return true;
+               }
+       }
+       return false;
+}
+
+void DummyPort::setup_random_number_generator ()
+{
+#ifdef PLATFORM_WINDOWS
+       LARGE_INTEGER Count;
+       if (QueryPerformanceCounter (&Count)) {
+               _rseed = Count.QuadPart % UINT_MAX;
+       } else
+#endif
+       {
+       _rseed = g_get_monotonic_time() % UINT_MAX;
+       }
+       _rseed = (_rseed + (uint64_t)this) % UINT_MAX;
+       if (_rseed == 0) _rseed = 1;
+}
+
+inline uint32_t
+DummyPort::randi ()
+{
+       // 31bit Park-Miller-Carta Pseudo-Random Number Generator
+       // http://www.firstpr.com.au/dsp/rand31/
+       uint32_t hi, lo;
+       lo = 16807 * (_rseed & 0xffff);
+       hi = 16807 * (_rseed >> 16);
+
+       lo += (hi & 0x7fff) << 16;
+       lo += hi >> 15;
+#if 1
+       lo = (lo & 0x7fffffff) + (lo >> 31);
+#else
+       if (lo > 0x7fffffff) { lo -= 0x7fffffff; }
+#endif
+       return (_rseed = lo);
+}
+
+inline float
+DummyPort::randf ()
+{
+       return (randi() / 1073741824.f) - 1.f;
+}
+
+/******************************************************************************/
+
+DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
+       : DummyPort (b, name, flags)
+       , _gen_type (Silence)
+       , _b0 (0)
+       , _b1 (0)
+       , _b2 (0)
+       , _b3 (0)
+       , _b4 (0)
+       , _b5 (0)
+       , _b6 (0)
+       , _wavetable (0)
+       , _gen_period (0)
+       , _gen_offset (0)
+       , _gen_perio2 (0)
+       , _gen_count2 (0)
+       , _pass (false)
+       , _rn1 (0)
+{
+       memset (_buffer, 0, sizeof (_buffer));
+}
+
+DummyAudioPort::~DummyAudioPort () {
+       free(_wavetable);
+       _wavetable = 0;
+}
+
+static std::string format_hz (float freq) {
+       std::stringstream ss;
+       if (freq >= 10000) {
+               ss <<  std::setprecision (1) << std::fixed << freq / 1000 << "kHz";
+       } else if (freq >= 1000) {
+               ss <<  std::setprecision (2) << std::fixed << freq / 1000 << "kHz";
+       } else {
+               ss <<  std::setprecision (1) << std::fixed << freq << "Hz";
+       }
+       return ss.str ();
+}
+
+static size_t fit_wave (float freq, float rate, float precision = 0.001) {
+       const size_t max_mult = floor (freq * rate);
+       float minErr = 2;
+       size_t fact = 1;
+       for (size_t i = 1; i < max_mult; ++i) {
+               const float isc = rate * (float)i / freq; // ideal sample count
+               const float rsc = rintf (isc); // rounded sample count
+               const float err = fabsf (isc - rsc);
+               if (err < minErr) {
+                       minErr = err;
+                       fact = i;
+               }
+               if (err < precision) {
+                       break;
+               }
+       }
+       //printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr);
+       return fact;
+}
+
+std::string
+DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total)
+{
+       std::string name;
+       DummyPort::setup_random_number_generator();
+       _gen_type = g;
+
+       switch (_gen_type) {
+               case PinkNoise:
+               case PonyNoise:
+               case UniformWhiteNoise:
+               case GaussianWhiteNoise:
+               case DC05:
+               case Silence:
+                       break;
+               case Demolition:
+                       _gen_period = 3 * samplerate;
+                       break;
+               case KronekerDelta:
+                       _gen_period = (5 + randi() % (int)(samplerate / 20.f));
+                       name = "Delta " + format_hz (samplerate / _gen_period);
+                       break;
+               case SquareWave:
+                       _gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1;
+                       name = "Square " + format_hz (samplerate / _gen_period);
+                       break;
+               case SineWaveOctaves:
+                       {
+                               const int x = c - floor (((float)total / 2));
+                               float f = powf (2.f, x / 3.f) * 1000.f;
+                               f = std::max (10.f, std::min (samplerate *.5f, f));
+                               const size_t mult = fit_wave (f, samplerate);
+                               _gen_period = rintf ((float)mult * samplerate / f);
+                               name = "Sine " + format_hz (samplerate * mult / (float)_gen_period);
+                               _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
+                               for (uint32_t i = 0 ; i < _gen_period; ++i) {
+                                       _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS
+                               }
+                       }
+                       break;
+               case SineWave:
+                       _gen_period = 5 + randi() % (int)(samplerate / 20.f);
+                       name = "Sine " + format_hz (samplerate / _gen_period);
+                       _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
+                       for (uint32_t i = 0 ; i < _gen_period; ++i) {
+                               _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS
+                       }
+                       break;
+               case SquareSweep:
+               case SquareSweepSwell:
+               case SineSweep:
+               case SineSweepSwell:
+                       {
+                               _gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f);
+                               _gen_period &= ~1;
+                               _gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period
+                               const double f_min = 20.;
+                               const double f_max = samplerate * .5;
+                               const double g_p2 = _gen_period * .5;
+#ifdef LINEAR_SWEEP
+                               const double b = (f_max - f_min) / (2. * samplerate * g_p2);
+                               const double a = f_min / samplerate;
+#else
+                               const double b = log (f_max / f_min) / g_p2;
+                               const double a = f_min / (b * samplerate);
+#endif
+                               const uint32_t g_p2i = rint(g_p2);
+                               _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
+                               for (uint32_t i = 0 ; i < g_p2i; ++i) {
+#ifdef LINEAR_SWEEP
+                                       const double phase = i * (a + b * i);
+#else
+                                       const double phase = a * exp (b * i) - a;
+#endif
+                                       _wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase)));
+                               }
+                               for (uint32_t i = g_p2i; i < _gen_period; ++i) {
+                                       const uint32_t j = _gen_period - i;
+#ifdef LINEAR_SWEEP
+                                       const double phase = j * (a + b * j);
+#else
+                                       const double phase = a * exp (b * j) - a;
+#endif
+                                       _wavetable[i] = -(float)sin (2. * M_PI * (phase - floor (phase)));
+                               }
+                               if (_gen_type == SquareSweep) {
+                                       for (uint32_t i = 0 ; i < _gen_period; ++i) {
+                                               _wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f;
+                                       }
+                               }
+                               else if (_gen_type == SquareSweepSwell) {
+                                       for (uint32_t i = 0 ; i < _gen_period; ++i) {
+                                               _wavetable[i] = _wavetable[i] < 0 ? -1 : 1;
+                                       }
+                               }
+                       }
+                       break;
+               case Loopback:
+                       _wavetable = (Sample*) malloc (DummyAudioBackend::max_buffer_size() * sizeof(Sample));
+                       break;
+       }
+       return name;
+}
+
+void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples)
+{
+       memset(_wavetable, 0, n_samples * sizeof(float));
+       /* generate an audio spike for every midi message
+        * to verify layency-compensation alignment
+        * (here: midi-out playback-latency + audio-in capture-latency)
+        */
+       for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
+               const pframes_t t = (*it)->timestamp();
+               assert(t < n_samples);
+               // somewhat arbitrary mapping for quick visual feedback
+               float v = -.5f;
+               if ((*it)->size() == 3) {
+                       const unsigned char *d = (*it)->const_data();
+                       if ((d[0] & 0xf0) == 0x90) { // note on
+                               v = .25f + d[2] / 512.f;
+                       }
+                       else if ((d[0] & 0xf0) == 0x80) { // note off
+                               v = .3f - d[2] / 640.f;
+                       }
+                       else if ((d[0] & 0xf0) == 0xb0) { // CC
+                               v = -.1f - d[2] / 256.f;
+                       }
+               }
+               _wavetable[t] += v;
+       }
+}
+
+float DummyAudioPort::grandf ()
+{
+       // Gaussian White Noise
+       // http://www.musicdsp.org/archive.php?classid=0#109
+       float x1, x2, r;
+
+       if (_pass) {
+               _pass = false;
+               return _rn1;
+       }
+
+       do {
+               x1 = randf ();
+               x2 = randf ();
+               r = x1 * x1 + x2 * x2;
+       } while ((r >= 1.0f) || (r < 1e-22f));
+
+       r = sqrtf (-2.f * logf (r) / r);
+
+       _pass = true;
+       _rn1 = r * x2;
+       return r * x1;
+}
+
+/* inspired by jack-demolition by Steve Harris */
+static const float _demolition[] = {
+        0.0f,           /* special case - 0dbFS white noise */
+        0.0f,           /* zero, may cause denomrals following a signal */
+        0.73 / 1e45,    /* very small - should be denormal when floated */
+        3.7f,           /* arbitrary number > 0dBFS */
+       -4.3f,           /* arbitrary negative number > 0dBFS */
+        4294967395.0f,  /* 2^16 + 100 */
+       -4294967395.0f,
+        HUGE,           /* Big, non-inf number */
+        INFINITY,       /* +inf */
+       -INFINITY,       /* -inf */
+       -NAN,            /* -nan */
+        NAN,            /*  nan */
+        0.0f,           /* some silence to check for recovery */
+};
+
+void DummyAudioPort::generate (const pframes_t n_samples)
+{
+       Glib::Threads::Mutex::Lock lm (generator_lock);
+       if (_gen_cycle) {
+               return;
+       }
+
+       switch (_gen_type) {
+               case Silence:
+                       memset (_buffer, 0, n_samples * sizeof (Sample));
+                       break;
+               case DC05:
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               _buffer[i] = 0.5f;
+                       }
+                       break;
+               case Demolition:
+                       switch (_gen_count2) {
+                               case 0: // noise
+                                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                                               _buffer[i] = randf();
+                                       }
+                                       break;
+                               default:
+                                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                                               _buffer[i] = _demolition [_gen_count2];
+                                       }
+                                       break;
+                       }
+                       _gen_offset += n_samples;
+                       if (_gen_offset > _gen_period) {
+                               _gen_offset = 0;
+                               _gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float));
+                       }
+                       break;
+               case SquareWave:
+                       assert(_gen_period > 0);
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               if (_gen_offset < _gen_period * .5f) {
+                                       _buffer[i] =  .40709f; // -6dBFS
+                               } else {
+                                       _buffer[i] = -.40709f;
+                               }
+                               _gen_offset = (_gen_offset + 1) % _gen_period;
+                       }
+                       break;
+               case KronekerDelta:
+                       assert(_gen_period > 0);
+                       memset (_buffer, 0, n_samples * sizeof (Sample));
+                       for (pframes_t i = 0; i < n_samples; ++i) {
+                               if (_gen_offset == 0) {
+                                       _buffer[i] = 1.0f;
+                               }
+                               _gen_offset = (_gen_offset + 1) % _gen_period;
+                       }
+                       break;
+               case SineSweepSwell:
+               case SquareSweepSwell:
+                       assert(_wavetable && _gen_period > 0);
+                       {
+                               const float vols = 2.f / (float)_gen_perio2;
+                               for (pframes_t i = 0; i < n_samples; ++i) {
+                                       const float g = fabsf (_gen_count2 * vols - 1.f);
+                                       _buffer[i] = g * _wavetable[_gen_offset];
+                                       _gen_offset = (_gen_offset + 1) % _gen_period;
+                                       _gen_count2 = (_gen_count2 + 1) % _gen_perio2;
+                               }
+                       }
+                       break;
+               case Loopback:
+                       _gen_period = n_samples; // XXX DummyBackend::_samples_per_period;
+               case SineWave:
+               case SineWaveOctaves:
+               case SineSweep:
+               case SquareSweep:
+                       assert(_wavetable && _gen_period > 0);
+                       {
+                               pframes_t written = 0;
+                               while (written < n_samples) {
+                                       const uint32_t remain = n_samples - written;
+                                       const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset);
+                                       memcpy((void*)&_buffer[written],
+                                                       (void*)&_wavetable[_gen_offset],
+                                                       to_copy * sizeof(Sample));
+                                       written += to_copy;
+                                       _gen_offset = (_gen_offset + to_copy) % _gen_period;
+                               }
+                       }
+                       break;
+               case UniformWhiteNoise:
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               _buffer[i] = .158489f * randf();
+                       }
+                       break;
+               case GaussianWhiteNoise:
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               _buffer[i] = .089125f * grandf();
+                       }
+                       break;
+               case PinkNoise:
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               // Paul Kellet's refined method
+                               // http://www.musicdsp.org/files/pink.txt
+                               // NB. If 'white' consists of uniform random numbers,
+                               // the pink noise will have an almost gaussian distribution.
+                               const float white = .0498f * randf ();
+                               _b0 = .99886f * _b0 + white * .0555179f;
+                               _b1 = .99332f * _b1 + white * .0750759f;
+                               _b2 = .96900f * _b2 + white * .1538520f;
+                               _b3 = .86650f * _b3 + white * .3104856f;
+                               _b4 = .55000f * _b4 + white * .5329522f;
+                               _b5 = -.7616f * _b5 - white * .0168980f;
+                               _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f;
+                               _b6 = white * 0.115926f;
+                       }
+                       break;
+               case PonyNoise:
+                       for (pframes_t i = 0 ; i < n_samples; ++i) {
+                               const float white = 0.0498f * randf ();
+                               // Paul Kellet's economy method
+                               // http://www.musicdsp.org/files/pink.txt
+                               _b0 = 0.99765f * _b0 + white * 0.0990460f;
+                               _b1 = 0.96300f * _b1 + white * 0.2965164f;
+                               _b2 = 0.57000f * _b2 + white * 1.0526913f;
+                               _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f;
+                       }
+                       break;
+       }
+       _gen_cycle = true;
+}
+
+void* DummyAudioPort::get_buffer (pframes_t n_samples)
+{
+       if (is_input ()) {
+               const std::set<DummyPort *>& connections = get_connections ();
+               std::set<DummyPort*>::const_iterator it = connections.begin ();
+               if (it == connections.end ()) {
+                       memset (_buffer, 0, n_samples * sizeof (Sample));
+               } else {
+                       DummyAudioPort * source = static_cast<DummyAudioPort*>(*it);
+                       assert (source && source->is_output ());
+                       if (source->is_physical() && source->is_terminal()) {
+                               source->get_buffer(n_samples); // generate signal.
+                       }
+                       memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
+                       while (++it != connections.end ()) {
+                               source = static_cast<DummyAudioPort*>(*it);
+                               assert (source && source->is_output ());
+                               Sample* dst = buffer ();
+                               if (source->is_physical() && source->is_terminal()) {
+                                       source->get_buffer(n_samples); // generate signal.
+                               }
+                               const Sample* src = source->const_buffer ();
+                               for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
+                                       *dst += *src;
+                               }
+                       }
+               }
+       } else if (is_output () && is_physical () && is_terminal()) {
+               if (!_gen_cycle) {
+                       generate(n_samples);
+               }
+       }
+       return _buffer;
+}
+
+
+DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
+       : DummyPort (b, name, flags)
+       , _midi_seq_spb (0)
+       , _midi_seq_time (0)
+       , _midi_seq_pos (0)
+{
+       _buffer.clear ();
+       _loopback.clear ();
+}
+
+DummyMidiPort::~DummyMidiPort () {
+       _buffer.clear ();
+       _loopback.clear ();
+}
+
+struct MidiEventSorter {
+       bool operator() (const boost::shared_ptr<DummyMidiEvent>& a, const boost::shared_ptr<DummyMidiEvent>& b) {
+               return *a < *b;
+       }
+};
+
+void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src)
+{
+       _loopback.clear ();
+       for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
+               _loopback.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
+       }
+}
+
+std::string
+DummyMidiPort::setup_generator (int seq_id, const float sr)
+{
+       DummyPort::setup_random_number_generator();
+       _midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS];
+       _midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat.
+       _midi_seq_pos = 0;
+       _midi_seq_time = 0;
+       return DummyMidiData::sequence_names[seq_id];
+}
+
+void DummyMidiPort::midi_generate (const pframes_t n_samples)
+{
+       Glib::Threads::Mutex::Lock lm (generator_lock);
+       if (_gen_cycle) {
+               return;
+       }
+
+       _buffer.clear ();
+       _gen_cycle = true;
+
+       if (_midi_seq_spb == 0 || !_midi_seq_dat) {
+               for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) {
+                       _buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
+               }
+               return;
+       }
+
+       while (1) {
+               const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time;
+               if (ev_beat_time < 0) {
+                       break;
+               }
+               if ((pframes_t) ev_beat_time >= n_samples) {
+                       break;
+               }
+               _buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (
+                                               ev_beat_time,
+                                               _midi_seq_dat[_midi_seq_pos].event,
+                                               _midi_seq_dat[_midi_seq_pos].size
+                                               )));
+               ++_midi_seq_pos;
+
+               if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) {
+                       _midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb;
+                       _midi_seq_pos = 0;
+               }
+       }
+       _midi_seq_time += n_samples;
+}
+
+
+void* DummyMidiPort::get_buffer (pframes_t n_samples)
+{
+       if (is_input ()) {
+               _buffer.clear ();
+               const std::set<DummyPort*>& connections = get_connections ();
+               for (std::set<DummyPort*>::const_iterator i = connections.begin ();
+                               i != connections.end ();
+                               ++i) {
+                       DummyMidiPort * source = static_cast<DummyMidiPort*>(*i);
+                       if (source->is_physical() && source->is_terminal()) {
+                               source->get_buffer(n_samples); // generate signal.
+                       }
+                       const DummyMidiBuffer *src = source->const_buffer ();
+                       for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
+                               _buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
+                       }
+               }
+               std::sort (_buffer.begin (), _buffer.end (), MidiEventSorter());
+       } else if (is_output () && is_physical () && is_terminal()) {
+               if (!_gen_cycle) {
+                       midi_generate(n_samples);
+               }
+       }
+       return &_buffer;
+}
+
+DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
+       : _size (size)
+       , _timestamp (timestamp)
+       , _data (0)
+{
+       if (size > 0) {
+               _data = (uint8_t*) malloc (size);
+               memcpy (_data, data, size);
+       }
+}
+
+DummyMidiEvent::DummyMidiEvent (const DummyMidiEvent& other)
+       : _size (other.size ())
+       , _timestamp (other.timestamp ())
+       , _data (0)
+{
+       if (other.size () && other.const_data ()) {
+               _data = (uint8_t*) malloc (other.size ());
+               memcpy (_data, other.const_data (), other.size ());
+       }
+};
+
+DummyMidiEvent::~DummyMidiEvent () {
+       free (_data);
+};