X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;ds=inline;f=libs%2Fbackends%2Fdummy%2Fdummy_audiobackend.cc;h=462f1b9dc3f04fc9d4570da2daf0def9797265f0;hb=50041cb4507e03af605286fc878cf92e953a3d86;hp=8cd7dac12c810f84d34abc28b0b9bb10cc2f4df2;hpb=2d634891962ce956611acadb2951ff020159b93a;p=ardour.git diff --git a/libs/backends/dummy/dummy_audiobackend.cc b/libs/backends/dummy/dummy_audiobackend.cc index 8cd7dac12c..462f1b9dc3 100644 --- a/libs/backends/dummy/dummy_audiobackend.cc +++ b/libs/backends/dummy/dummy_audiobackend.cc @@ -24,6 +24,7 @@ #include #include "dummy_audiobackend.h" +#include "dummy_midi_seq.h" #include "pbd/error.h" #include "ardour/port_manager.h" @@ -36,9 +37,28 @@ size_t DummyAudioBackend::_max_buffer_size = 8192; std::vector DummyAudioBackend::_midi_options; std::vector DummyAudioBackend::_device_status; +#ifdef PLATFORM_WINDOWS +static double _win_pc_rate = 0; // usec per tick +#endif + +static int64_t _x_get_monotonic_usec() { +#ifdef PLATFORM_WINDOWS + if (_win_pc_rate > 0) { + LARGE_INTEGER Count; + // not very reliable, but the only realistic way for sub milli-seconds + if (QueryPerformanceCounter (&Count)) { + return (int64_t) (Count.QuadPart * _win_pc_rate); + } + return -1; + } +#endif + return g_get_monotonic_time(); +} + DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , _running (false) + , _freewheel (false) , _freewheeling (false) , _device ("") , _samplerate (48000) @@ -48,12 +68,14 @@ DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) , _n_outputs (0) , _n_midi_inputs (0) , _n_midi_outputs (0) + , _midi_mode (MidiNoEvents) , _systemic_input_latency (0) , _systemic_output_latency (0) , _processed_samples (0) , _port_change_flag (false) { _instance_name = s_instance_name; + _device = _("Silence"); pthread_mutex_init (&_port_callback_mutex, 0); } @@ -82,9 +104,17 @@ DummyAudioBackend::enumerate_devices () const if (_device_status.empty()) { _device_status.push_back (DeviceStatus (_("Silence"), true)); _device_status.push_back (DeviceStatus (_("Sine Wave"), true)); - _device_status.push_back (DeviceStatus (_("White Noise"), true)); + _device_status.push_back (DeviceStatus (_("Square Wave"), true)); + _device_status.push_back (DeviceStatus (_("Impulses"), true)); + _device_status.push_back (DeviceStatus (_("Uniform White Noise"), true)); + _device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true)); + _device_status.push_back (DeviceStatus (_("Sine Sweep"), true)); + _device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true)); + _device_status.push_back (DeviceStatus (_("Square Sweep"), true)); + _device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true)); + _device_status.push_back (DeviceStatus (_("Loopback"), true)); } return _device_status; } @@ -171,6 +201,28 @@ DummyAudioBackend::set_buffer_size (uint32_t bs) return -1; } _samples_per_period = bs; + + /* update port latencies + * with 'Loopback' there is exactly once cycle latency, + * divide it between In + Out; + */ + LatencyRange lr; + lr.min = lr.max = _systemic_input_latency; + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { + set_latency_range (*it, false, lr); + } + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { + set_latency_range (*it, false, lr); + } + + lr.min = lr.max = _systemic_output_latency; + for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { + set_latency_range (*it, true, lr); + } + for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { + set_latency_range (*it, true, lr); + } + engine.buffer_size_change (bs); return 0; } @@ -265,9 +317,13 @@ std::vector DummyAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { - _midi_options.push_back (_("1 in, 1 out")); - _midi_options.push_back (_("2 in, 2 out")); - _midi_options.push_back (_("8 in, 8 out")); + _midi_options.push_back (_("1 in, 1 out, Silence")); + _midi_options.push_back (_("2 in, 2 out, Silence")); + _midi_options.push_back (_("8 in, 8 out, Silence")); + _midi_options.push_back (_("Midi Event Generators")); + _midi_options.push_back (_("8 in, 8 out, Loopback")); + _midi_options.push_back (_("MIDI to Audio, Loopback")); + _midi_options.push_back (_("No MIDI I/O")); } return _midi_options; } @@ -275,14 +331,27 @@ DummyAudioBackend::enumerate_midi_options () const int DummyAudioBackend::set_midi_option (const std::string& opt) { - if (opt == _("1 in, 1 out")) { + _midi_mode = MidiNoEvents; + if (opt == _("1 in, 1 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 1; } - else if (opt == _("2 in, 2 out")) { + else if (opt == _("2 in, 2 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 2; } - else if (opt == _("8 in, 8 out")) { + else if (opt == _("8 in, 8 out, Silence")) { + _n_midi_inputs = _n_midi_outputs = 8; + } + else if (opt == _("Midi Event Generators")) { + _n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS; + _midi_mode = MidiGenerator; + } + else if (opt == _("8 in, 8 out, Loopback")) { _n_midi_inputs = _n_midi_outputs = 8; + _midi_mode = MidiLoopback; + } + else if (opt == _("MIDI to Audio, Loopback")) { + _n_midi_inputs = _n_midi_outputs = UINT32_MAX; + _midi_mode = MidiToAudio; } else { _n_midi_inputs = _n_midi_outputs = 0; @@ -316,7 +385,13 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) if (_ports.size()) { PBD::warning << _("DummyAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; + for (std::vector::const_iterator it = _ports.begin (); it != _ports.end (); ++it) { + PBD::info << _("DummyAudioBackend: port '") << (*it)->name () << "' exists." << endmsg; + } _system_inputs.clear(); + _system_outputs.clear(); + _system_midi_in.clear(); + _system_midi_out.clear(); _ports.clear(); } @@ -365,18 +440,14 @@ DummyAudioBackend::stop () PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg; return -1; } - unregister_system_ports(); + unregister_ports(); return 0; } int DummyAudioBackend::freewheel (bool onoff) { - if (onoff == _freewheeling) { - return 0; - } _freewheeling = onoff; - engine.freewheel_callback (onoff); return 0; } @@ -399,13 +470,13 @@ DummyAudioBackend::raw_buffer_size (DataType t) } /* Process time */ -pframes_t +framepos_t DummyAudioBackend::sample_time () { return _processed_samples; } -pframes_t +framepos_t DummyAudioBackend::sample_time_at_cycle_start () { return _processed_samples; @@ -470,6 +541,10 @@ DummyAudioBackend::join_process_threads () bool DummyAudioBackend::in_process_thread () { + if (pthread_equal (_main_thread, pthread_self()) != 0) { + return true; + } + for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { @@ -591,6 +666,9 @@ DummyAudioBackend::register_port ( { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } + if (!_running) { + PBD::info << _("DummyBackend::register_port: Engine is not running.") << endmsg; + } return add_port (_instance_name + ":" + name, type, flags); } @@ -627,8 +705,10 @@ DummyAudioBackend::add_port ( void DummyAudioBackend::unregister_port (PortEngine::PortHandle port_handle) { - if (!valid_port (port_handle)) { - PBD::error << _("DummyBackend::unregister_port: Invalid Port.") << endmsg; + if (!_running) { + PBD::info << _("DummyBackend::unregister_port: Engine is not running.") << endmsg; + assert (!valid_port (port_handle)); + return; } DummyPort* port = static_cast(port_handle); std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); @@ -646,25 +726,46 @@ DummyAudioBackend::register_system_ports() { LatencyRange lr; enum DummyAudioPort::GeneratorType gt; - if (_device == _("White Noise")) { - gt = DummyAudioPort::WhiteNoise; + if (_device == _("Uniform White Noise")) { + gt = DummyAudioPort::UniformWhiteNoise; + } else if (_device == _("Gaussian White Noise")) { + gt = DummyAudioPort::GaussianWhiteNoise; } else if (_device == _("Pink Noise")) { gt = DummyAudioPort::PinkNoise; } else if (_device == _("Pink Noise (low CPU)")) { gt = DummyAudioPort::PonyNoise; } else if (_device == _("Sine Wave")) { gt = DummyAudioPort::SineWave; + } else if (_device == _("Square Wave")) { + gt = DummyAudioPort::SquareWave; + } else if (_device == _("Impulses")) { + gt = DummyAudioPort::KronekerDelta; + } else if (_device == _("Sine Sweep")) { + gt = DummyAudioPort::SineSweep; + } else if (_device == _("Sine Sweep Swell")) { + gt = DummyAudioPort::SineSweepSwell; + } else if (_device == _("Square Sweep")) { + gt = DummyAudioPort::SquareSweep; + } else if (_device == _("Square Sweep Swell")) { + gt = DummyAudioPort::SquareSweepSwell; + } else if (_device == _("Loopback")) { + gt = DummyAudioPort::Loopback; } else { gt = DummyAudioPort::Silence; } + if (_midi_mode == MidiToAudio) { + gt = DummyAudioPort::Loopback; + } + const int a_ins = _n_inputs > 0 ? _n_inputs : 8; const int a_out = _n_outputs > 0 ? _n_outputs : 8; - const int m_ins = _n_midi_inputs > 0 ? _n_midi_inputs : 2; - const int m_out = _n_midi_outputs > 0 ? _n_midi_outputs : 2; + const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs; + const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs; + /* audio ports */ - lr.min = lr.max = _samples_per_period + _systemic_input_latency; + lr.min = lr.max = _systemic_input_latency; for (int i = 1; i <= a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i); @@ -675,45 +776,55 @@ DummyAudioBackend::register_system_ports() static_cast(p)->setup_generator (gt, _samplerate); } - lr.min = lr.max = _samples_per_period + _systemic_output_latency; + lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); + _system_outputs.push_back (static_cast(p)); } /* midi ports */ - lr.min = lr.max = _samples_per_period + _systemic_input_latency; - for (int i = 1; i <= m_ins; ++i) { + lr.min = lr.max = _systemic_input_latency; + for (int i = 0; i < m_ins; ++i) { char tmp[64]; - snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i); + snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); + _system_midi_in.push_back (static_cast(p)); + if (_midi_mode == MidiGenerator) { + static_cast(p)->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate); + } } - lr.min = lr.max = _samples_per_period + _systemic_output_latency; + lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= m_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); + _system_midi_out.push_back (static_cast(p)); } return 0; } void -DummyAudioBackend::unregister_system_ports() +DummyAudioBackend::unregister_ports (bool system_only) { size_t i = 0; _system_inputs.clear(); + _system_outputs.clear(); + _system_midi_in.clear(); + _system_midi_out.clear(); while (i < _ports.size ()) { DummyPort* port = _ports[i]; - if (port->is_physical () && port->is_terminal ()) { + if (! system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); + delete port; _ports.erase (_ports.begin() + i); } else { ++i; @@ -933,14 +1044,32 @@ DummyAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_play LatencyRange DummyAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { + LatencyRange r; if (!valid_port (port)) { PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg; - LatencyRange r; r.min = 0; r.max = 0; return r; } - return static_cast(port)->latency_range (for_playback); + DummyPort *p = static_cast(port); + assert(p); + + r = p->latency_range (for_playback); + if (p->is_physical() && p->is_terminal()) { + if (p->is_input() && for_playback) { + const size_t l_in = _samples_per_period * .25; + r.min += l_in; + r.max += l_in; + } + if (p->is_output() && !for_playback) { + /* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */ + const size_t l_in = _samples_per_period * .25; + const size_t l_out = _samples_per_period - l_in; + r.min += l_out; + r.max += l_out; + } + } + return r; } /* Discovering physical ports */ @@ -1040,34 +1169,92 @@ DummyAudioBackend::main_process_thread () manager.registration_callback(); manager.graph_order_callback(); - uint64_t clock1, clock2; - clock1 = g_get_monotonic_time(); + int64_t clock1, clock2; + clock1 = _x_get_monotonic_usec(); while (_running) { + if (_freewheeling != _freewheel) { + _freewheel = _freewheeling; + engine.freewheel_callback (_freewheel); + } + // re-set input buffers, generate on demand. for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { (*it)->next_period(); } + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { + (*it)->next_period(); + } if (engine.process_callback (_samples_per_period)) { return 0; } _processed_samples += _samples_per_period; - if (!_freewheeling) { - clock2 = g_get_monotonic_time(); - const int64_t elapsed_time = clock2 - clock1; + + if (_device == _("Loopback") && _midi_mode != MidiToAudio) { + int opn = 0; + int opc = _system_outputs.size(); + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { + DummyAudioPort* op = _system_outputs[(opn % opc)]; + (*it)->fill_wavetable ((const float*)op->get_buffer (_samples_per_period), _samples_per_period); + } + } + + if (_midi_mode == MidiLoopback) { + int opn = 0; + int opc = _system_midi_out.size(); + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) { + DummyMidiPort* op = _system_midi_out[(opn % opc)]; + op->get_buffer(0); // mix-down + (*it)->set_loopback (op->const_buffer()); + } + } + else if (_midi_mode == MidiToAudio) { + int opn = 0; + int opc = _system_midi_out.size(); + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { + DummyMidiPort* op = _system_midi_out[(opn % opc)]; + op->get_buffer(0); // mix-down + (*it)->midi_to_wavetable (op->const_buffer(), _samples_per_period); + } + } + + if (!_freewheel) { const int64_t nomial_time = 1e6 * _samples_per_period / _samplerate; - _dsp_load = elapsed_time / (float) nomial_time; + clock2 = _x_get_monotonic_usec(); +#ifdef PLATFORM_WINDOWS + bool win_timers_ok = true; + /* querying the performance counter can fail occasionally (-1). + * Also on some multi-core systems, timers are CPU specific and not + * synchronized. We assume they differ more than a few milliseconds + * (4 * nominal cycle time) and simply ignore cases where the + * execution switches cores. + */ + if (clock1 < 0 || clock2 < 0 || (clock1 > clock2) || (clock2 - clock1) > 4 * nomial_time) { + clock2 = clock1 = 0; + win_timers_ok = false; + } +#endif + const int64_t elapsed_time = clock2 - clock1; +#ifdef PLATFORM_WINDOWS + if (win_timers_ok) +#endif + { // low pass filter + _dsp_load = _dsp_load + .05 * ((elapsed_time / (float) nomial_time) - _dsp_load) + 1e-12; + } + if (elapsed_time < nomial_time) { Glib::usleep (nomial_time - elapsed_time); } else { Glib::usleep (100); // don't hog cpu } } else { - _dsp_load = 1.0; + _dsp_load = 1.0f; Glib::usleep (100); // don't hog cpu } - clock1 = g_get_monotonic_time(); + + /* beginning of netx cycle */ + clock1 = _x_get_monotonic_usec(); bool connections_changed = false; bool ports_changed = false; @@ -1112,6 +1299,7 @@ static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); +static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { "Dummy", @@ -1119,6 +1307,7 @@ static ARDOUR::AudioBackendInfo _descriptor = { deinstantiate, backend_factory, already_configured, + available }; static boost::shared_ptr @@ -1134,6 +1323,14 @@ static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; +#ifdef PLATFORM_WINDOWS + LARGE_INTEGER Frequency; + if (!QueryPerformanceFrequency(&Frequency) || Frequency.QuadPart < 1) { + _win_pc_rate = 0; + } else { + _win_pc_rate = 1000000.0 / Frequency.QuadPart; + } +#endif return 0; } @@ -1147,9 +1344,18 @@ deinstantiate () static bool already_configured () { + if (_instance) { + return _instance->is_running(); + } return false; } +static bool +available () +{ + return true; +} + extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; @@ -1161,6 +1367,8 @@ DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags f : _dummy_backend (b) , _name (name) , _flags (flags) + , _rseed (0) + , _gen_cycle (false) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; @@ -1282,12 +1490,50 @@ bool DummyPort::is_physically_connected () const return false; } +void DummyPort::setup_random_number_generator () +{ +#ifdef PLATFORM_WINDOWS + LARGE_INTEGER Count; + if (QueryPerformanceCounter (&Count)) { + _rseed = Count.QuadPart % UINT_MAX; + } else +#endif + { + _rseed = g_get_monotonic_time() % UINT_MAX; + } + _rseed = (_rseed + (uint64_t)this) % UINT_MAX; +} + +inline uint32_t +DummyPort::randi () +{ + // 31bit Park-Miller-Carta Pseudo-Random Number Generator + // http://www.firstpr.com.au/dsp/rand31/ + uint32_t hi, lo; + lo = 16807 * (_rseed & 0xffff); + hi = 16807 * (_rseed >> 16); + + lo += (hi & 0x7fff) << 16; + lo += hi >> 15; +#if 1 + lo = (lo & 0x7fffffff) + (lo >> 31); +#else + if (lo > 0x7fffffff) { lo -= 0x7fffffff; } +#endif + return (_rseed = lo); +} + +inline float +DummyPort::randf () +{ + return (randi() / 1073741824.f) - 1.f; +} + /******************************************************************************/ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) , _gen_type (Silence) - , _gen_cycle (false) , _b0 (0) , _b1 (0) , _b2 (0) @@ -1296,8 +1542,10 @@ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, P , _b5 (0) , _b6 (0) , _wavetable (0) - , _tbl_length (0) - , _tbl_offset (0) + , _gen_period (0) + , _gen_offset (0) + , _gen_perio2 (0) + , _gen_count2 (0) , _pass (false) , _rn1 (0) { @@ -1311,50 +1559,110 @@ DummyAudioPort::~DummyAudioPort () { void DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate) { + DummyPort::setup_random_number_generator(); _gen_type = g; - _rseed = g_get_monotonic_time() % UINT_MAX; switch (_gen_type) { case PinkNoise: case PonyNoise: - case WhiteNoise: + case UniformWhiteNoise: + case GaussianWhiteNoise: case Silence: break; + case KronekerDelta: + _gen_period = (5 + randi() % (int)(samplerate / 20.f)); + break; + case SquareWave: + _gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1; + break; case SineWave: + _gen_period = 5 + randi() % (int)(samplerate / 20.f); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS + } + break; + case SquareSweep: + case SquareSweepSwell: + case SineSweep: + case SineSweepSwell: { - _tbl_length = 5 + randi() % (int)(samplerate / 20.f); - _wavetable = (Sample*) malloc( _tbl_length * sizeof(Sample)); - for (uint32_t i = 0 ; i < _tbl_length; ++i) { - _wavetable[i] = .12589f * sinf(2.0 * M_PI * (float)i / (float)_tbl_length); + _gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f); + _gen_period &= ~1; + _gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period + const double f_min = 20.; + const double f_max = samplerate * .5; + const double g_p2 = _gen_period * .5; +#ifdef LINEAR_SWEEP + const double b = (f_max - f_min) / (2. * samplerate * g_p2); + const double a = f_min / samplerate; +#else + const double b = log (f_max / f_min) / g_p2; + const double a = f_min / (b * samplerate); +#endif + const uint32_t g_p2i = rint(g_p2); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < g_p2i; ++i) { +#ifdef LINEAR_SWEEP + const double phase = i * (a + b * i); +#else + const double phase = a * exp (b * i) - a; +#endif + _wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase))); + } + for (uint32_t i = g_p2i; i < _gen_period; ++i) { + const uint32_t j = _gen_period - i; +#ifdef LINEAR_SWEEP + const double phase = j * (a + b * j); +#else + const double phase = a * exp (b * j) - a; +#endif + _wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase))); + } + if (_gen_type == SquareSweep) { + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f; + } + } + else if (_gen_type == SquareSweepSwell) { + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = _wavetable[i] < 0 ? -1 : 1; + } } } break; + case Loopback: + _wavetable = (Sample*) malloc (DummyAudioBackend::max_buffer_size() * sizeof(Sample)); + break; } } -inline uint32_t -DummyAudioPort::randi () -{ - // 31bit Park-Miller-Carta Pseudo-Random Number Generator - // http://www.firstpr.com.au/dsp/rand31/ - uint32_t hi, lo; - lo = 16807 * (_rseed & 0xffff); - hi = 16807 * (_rseed >> 16); - - lo += (hi & 0x7fff) << 16; - lo += hi >> 15; -#if 1 - lo = (lo & 0x7fffffff) + (lo >> 31); -#else - if (lo > 0x7fffffff) { lo -= 0x7fffffff; } -#endif - return (_rseed = lo); -} - -inline float -DummyAudioPort::randf () +void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples) { - return (randi() / 1073741824.f) - 1.f; + memset(_wavetable, 0, n_samples * sizeof(float)); + /* generate an audio spike for every midi message + * to verify layency-compensation alignment + * (here: midi-out playback-latency + audio-in capture-latency) + */ + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { + const pframes_t t = (*it)->timestamp(); + assert(t < n_samples); + // somewhat arbitrary mapping for quick visual feedback + float v = -.5f; + if ((*it)->size() == 3) { + const unsigned char *d = (*it)->const_data(); + if ((d[0] & 0xf0) == 0x90) { // note on + v = .25f + d[2] / 512.f; + } + else if ((d[0] & 0xf0) == 0x80) { // note off + v = .3f - d[2] / 640.f; + } + else if ((d[0] & 0xf0) == 0xb0) { // CC + v = -.1f - d[2] / 256.f; + } + } + _wavetable[t] += v; + } } float DummyAudioPort::grandf () @@ -1392,22 +1700,65 @@ void DummyAudioPort::generate (const pframes_t n_samples) case Silence: memset (_buffer, 0, n_samples * sizeof (Sample)); break; + case SquareWave: + assert(_gen_period > 0); + for (pframes_t i = 0 ; i < n_samples; ++i) { + if (_gen_offset < _gen_period * .5f) { + _buffer[i] = .40709f; // -6dBFS + } else { + _buffer[i] = -.40709f; + } + _gen_offset = (_gen_offset + 1) % _gen_period; + } + break; + case KronekerDelta: + assert(_gen_period > 0); + memset (_buffer, 0, n_samples * sizeof (Sample)); + for (pframes_t i = 0; i < n_samples; ++i) { + if (_gen_offset == 0) { + _buffer[i] = 1.0f; + } + _gen_offset = (_gen_offset + 1) % _gen_period; + } + break; + case SineSweepSwell: + case SquareSweepSwell: + assert(_wavetable && _gen_period > 0); + { + const float vols = 2.f / (float)_gen_perio2; + for (pframes_t i = 0; i < n_samples; ++i) { + const float g = fabsf (_gen_count2 * vols - 1.0); + _buffer[i] = g * _wavetable[_gen_offset]; + _gen_offset = (_gen_offset + 1) % _gen_period; + _gen_count2 = (_gen_count2 + 1) % _gen_perio2; + } + } + break; + case Loopback: + _gen_period = n_samples; // XXX DummyBackend::_samples_per_period; case SineWave: - assert(_wavetable && _tbl_length > 0); + case SineSweep: + case SquareSweep: + assert(_wavetable && _gen_period > 0); { pframes_t written = 0; while (written < n_samples) { const uint32_t remain = n_samples - written; - const uint32_t to_copy = std::min(remain, _tbl_length - _tbl_offset); + const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset); memcpy((void*)&_buffer[written], - (void*)&_wavetable[_tbl_offset], + (void*)&_wavetable[_gen_offset], to_copy * sizeof(Sample)); written += to_copy; - _tbl_offset = (_tbl_offset + to_copy) % _tbl_length; + _gen_offset = (_gen_offset + to_copy) % _gen_period; } } break; - case WhiteNoise: + case UniformWhiteNoise: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = .158489f * randf(); + } + break; + case GaussianWhiteNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = .089125f * grandf(); } @@ -1425,8 +1776,8 @@ void DummyAudioPort::generate (const pframes_t n_samples) _b3 = .86650f * _b3 + white * .3104856f; _b4 = .55000f * _b4 + white * .5329522f; _b5 = -.7616f * _b5 - white * .0168980f; - _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362; - _b6 = white * 0.115926; + _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f; + _b6 = white * 0.115926f; } break; case PonyNoise: @@ -1434,10 +1785,10 @@ void DummyAudioPort::generate (const pframes_t n_samples) const float white = 0.0498f * randf (); // Paul Kellet's economy method // http://www.musicdsp.org/files/pink.txt - _b0 = 0.99765 * _b0 + white * 0.0990460; - _b1 = 0.96300 * _b1 + white * 0.2965164; - _b2 = 0.57000 * _b2 + white * 1.0526913; - _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848; + _b0 = 0.99765f * _b0 + white * 0.0990460f; + _b1 = 0.96300f * _b1 + white * 0.2965164f; + _b2 = 0.57000f * _b2 + white * 1.0526913f; + _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f; } break; } @@ -1481,11 +1832,18 @@ void* DummyAudioPort::get_buffer (pframes_t n_samples) DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) + , _midi_seq_spb (0) + , _midi_seq_time (0) + , _midi_seq_pos (0) { _buffer.clear (); + _loopback.clear (); } -DummyMidiPort::~DummyMidiPort () { } +DummyMidiPort::~DummyMidiPort () { + _buffer.clear (); + _loopback.clear (); +} struct MidiEventSorter { bool operator() (const boost::shared_ptr& a, const boost::shared_ptr& b) { @@ -1493,21 +1851,85 @@ struct MidiEventSorter { } }; -void* DummyMidiPort::get_buffer (pframes_t /* nframes */) +void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src) +{ + _loopback.clear (); + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { + _loopback.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); + } +} + +void DummyMidiPort::setup_generator (int seq_id, const float sr) +{ + DummyPort::setup_random_number_generator(); + _midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS]; + _midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat. + _midi_seq_pos = 0; + _midi_seq_time = 0; +} + +void DummyMidiPort::midi_generate (const pframes_t n_samples) +{ + Glib::Threads::Mutex::Lock lm (generator_lock); + if (_gen_cycle) { + return; + } + + _buffer.clear (); + _gen_cycle = true; + + if (_midi_seq_spb == 0 || !_midi_seq_dat) { + for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) { + _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); + } + return; + } + + while (1) { + const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time; + if (ev_beat_time < 0) { + break; + } + if ((pframes_t) ev_beat_time >= n_samples) { + break; + } + _buffer.push_back (boost::shared_ptr(new DummyMidiEvent ( + ev_beat_time, + _midi_seq_dat[_midi_seq_pos].event, + _midi_seq_dat[_midi_seq_pos].size + ))); + ++_midi_seq_pos; + + if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) { + _midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb; + _midi_seq_pos = 0; + } + } + _midi_seq_time += n_samples; +} + + +void* DummyMidiPort::get_buffer (pframes_t n_samples) { if (is_input ()) { _buffer.clear (); for (std::vector::const_iterator i = get_connections ().begin (); i != get_connections ().end (); ++i) { - const DummyMidiBuffer src = static_cast(*i)->const_buffer (); - for (DummyMidiBuffer::const_iterator it = src.begin (); it != src.end (); ++it) { + DummyMidiPort * source = static_cast(*i); + if (source->is_physical() && source->is_terminal()) { + source->get_buffer(n_samples); // generate signal. + } + const DummyMidiBuffer *src = source->const_buffer (); + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); } } std::sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); } else if (is_output () && is_physical () && is_terminal()) { - _buffer.clear (); + if (!_gen_cycle) { + midi_generate(n_samples); + } } return &_buffer; } @@ -1519,7 +1941,7 @@ DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, { if (size > 0) { _data = (uint8_t*) malloc (size); - memcpy (_data, data, size); + memcpy (_data, data, size); } }