X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;f=libs%2Fardour%2Finterpolation.cc;h=20ab584885e7f19dd6bd348c2648b5d429c08c1b;hb=86d927b4ddbcedd1d6c120b1176aaef7352773cd;hp=7aece6453cf2623261d70b9f945e7bf99cd64190;hpb=f284d28d5306114e9badc9077835683e541420e0;p=ardour.git diff --git a/libs/ardour/interpolation.cc b/libs/ardour/interpolation.cc index 7aece6453c..20ab584885 100644 --- a/libs/ardour/interpolation.cc +++ b/libs/ardour/interpolation.cc @@ -1,43 +1,136 @@ #include +#include + #include "ardour/interpolation.h" -nframes_t -LinearInterpolation::interpolate (nframes_t nframes, Sample *input, Sample *output) +using namespace ARDOUR; + + +framecnt_t +LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) { - // the idea behind phase is that when the speed is not 1.0, we have to - // interpolate between samples and then we have to store where we thought we were. - // rather than being at sample N or N+1, we were at N+0.8792922 - // so the "phase" element, if you want to think about this way, - // varies from 0 to 1, representing the "offset" between samples - uint64_t phase = last_phase; - - // acceleration - int64_t phi_delta; - - // phi = fixed point speed - if (phi != target_phi) { - phi_delta = ((int64_t)(target_phi - phi)) / nframes; + // index in the input buffers + framecnt_t i = 0; + + double acceleration; + double distance = 0.0; + + if (_speed != _target_speed) { + acceleration = _target_speed - _speed; } else { - phi_delta = 0; + acceleration = 0.0; } - - // index in the input buffers - nframes_t i = 0; - - for (nframes_t outsample = 0; outsample < nframes; ++outsample) { - i = phase >> 24; - Sample fractional_phase_part = (phase & fractional_part_mask) / binary_scaling_factor; - - // Linearly interpolate into the output buffer - // using fixed point math - output[outsample] = - input[i] * (1.0f - fractional_phase_part) + - input[i+1] * fractional_phase_part; - phase += phi + phi_delta; + + distance = phase[channel]; + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + i = floor(distance); + Sample fractional_phase_part = distance - i; + if (fractional_phase_part >= 1.0) { + fractional_phase_part -= 1.0; + i++; + } + + if (input && output) { + // Linearly interpolate into the output buffer + output[outsample] = + input[i] * (1.0f - fractional_phase_part) + + input[i+1] * fractional_phase_part; + } + distance += _speed + acceleration; } - last_phase = (phase & fractional_part_mask); - - // playback distance + i = floor(distance); + phase[channel] = distance - floor(distance); + return i; } + +framecnt_t +CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) +{ + // index in the input buffers + framecnt_t i = 0; + + double acceleration; + double distance = 0.0; + + if (_speed != _target_speed) { + acceleration = _target_speed - _speed; + } else { + acceleration = 0.0; + } + + distance = phase[channel]; + + if (nframes < 3) { + /* no interpolation possible */ + + for (i = 0; i < nframes; ++i) { + output[i] = input[i]; + } + + return nframes; + } + + /* keep this condition out of the inner loop */ + + if (input && output) { + + Sample inm1; + + if (floor (distance) == 0.0) { + /* best guess for the fake point we have to add to be able to interpolate at i == 0: + .... maintain slope of first actual segment ... + */ + inm1 = input[i] - (input[i+1] - input[i]); + } else { + inm1 = input[i-1]; + } + + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + + float f = floor (distance); + float fractional_phase_part = distance - f; + + /* get the index into the input we should start with */ + + i = lrintf (f); + + /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory + it should always be < 1.0. If it ever >= 1.0, then bump the index we use + and back it off. This is the point where we "skip" an entire sample in the + input, because the phase part has accumulated so much error that we should + really be closer to the next sample. or something like that ... + */ + + if (fractional_phase_part >= 1.0) { + fractional_phase_part -= 1.0; + ++i; + } + + // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler + // optimization to take care of the rest + // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h) + + output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 + + fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] + + fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2]))); + + distance += _speed + acceleration; + inm1 = input[i]; + } + + } else { + + /* not sure that this is ever utilized - it implies that one of the input/output buffers is missing */ + + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + distance += _speed + acceleration; + } + } + + i = floor(distance); + phase[channel] = distance - floor(distance); + + return i; +}