X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;f=libs%2Fardour%2Finterpolation.cc;h=20ab584885e7f19dd6bd348c2648b5d429c08c1b;hb=86d927b4ddbcedd1d6c120b1176aaef7352773cd;hp=a4a4b08872ff0506597d3c25bcae3c8c44ce0a73;hpb=f42f577bedbffcd2465341e033afac0a0326a491;p=ardour.git diff --git a/libs/ardour/interpolation.cc b/libs/ardour/interpolation.cc index a4a4b08872..20ab584885 100644 --- a/libs/ardour/interpolation.cc +++ b/libs/ardour/interpolation.cc @@ -1,76 +1,136 @@ #include +#include #include "ardour/interpolation.h" using namespace ARDOUR; -Interpolation::Interpolation() : _speed (1.0L), state (0) -{ -} -Interpolation::~Interpolation() +framecnt_t +LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) { - state = src_delete (state); -} + // index in the input buffers + framecnt_t i = 0; -void -Interpolation::set_speed (double new_speed) -{ - _speed = new_speed; - src_set_ratio (state, 1.0/_speed); -} + double acceleration; + double distance = 0.0; -void -Interpolation::reset_state () -{ - if (state) { - src_reset (state); + if (_speed != _target_speed) { + acceleration = _target_speed - _speed; } else { - state = src_new (SRC_LINEAR, 1, &error); + acceleration = 0.0; } -} -void -Interpolation::add_channel_to (int input_buffer_size, int output_buffer_size) -{ - SRC_DATA newdata; - - /* Set up sample rate converter info. */ - newdata.end_of_input = 0 ; - - newdata.input_frames = input_buffer_size; - newdata.output_frames = output_buffer_size; - - newdata.input_frames_used = 0 ; - newdata.output_frames_gen = 0 ; - - newdata.src_ratio = 1.0/_speed; - - data.push_back (newdata); - - reset_state (); + distance = phase[channel]; + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + i = floor(distance); + Sample fractional_phase_part = distance - i; + if (fractional_phase_part >= 1.0) { + fractional_phase_part -= 1.0; + i++; + } + + if (input && output) { + // Linearly interpolate into the output buffer + output[outsample] = + input[i] * (1.0f - fractional_phase_part) + + input[i+1] * fractional_phase_part; + } + distance += _speed + acceleration; + } + + i = floor(distance); + phase[channel] = distance - floor(distance); + + return i; } -void -Interpolation::remove_channel_from () +framecnt_t +CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) { - data.pop_back (); - reset_state (); -} + // index in the input buffers + framecnt_t i = 0; -nframes_t -Interpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) -{ - data[channel].data_in = input; - data[channel].data_out = output; - - data[channel].output_frames = nframes; - data[channel].src_ratio = 1.0/_speed; - - if ((error = src_process (state, &data[channel]))) { - printf ("\nError : %s\n\n", src_strerror (error)); - exit (1); - } + double acceleration; + double distance = 0.0; + + if (_speed != _target_speed) { + acceleration = _target_speed - _speed; + } else { + acceleration = 0.0; + } + + distance = phase[channel]; + + if (nframes < 3) { + /* no interpolation possible */ + + for (i = 0; i < nframes; ++i) { + output[i] = input[i]; + } + + return nframes; + } + + /* keep this condition out of the inner loop */ + + if (input && output) { + + Sample inm1; + + if (floor (distance) == 0.0) { + /* best guess for the fake point we have to add to be able to interpolate at i == 0: + .... maintain slope of first actual segment ... + */ + inm1 = input[i] - (input[i+1] - input[i]); + } else { + inm1 = input[i-1]; + } + + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + + float f = floor (distance); + float fractional_phase_part = distance - f; + + /* get the index into the input we should start with */ + + i = lrintf (f); + + /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory + it should always be < 1.0. If it ever >= 1.0, then bump the index we use + and back it off. This is the point where we "skip" an entire sample in the + input, because the phase part has accumulated so much error that we should + really be closer to the next sample. or something like that ... + */ + + if (fractional_phase_part >= 1.0) { + fractional_phase_part -= 1.0; + ++i; + } + + // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler + // optimization to take care of the rest + // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h) + + output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 + + fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] + + fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2]))); + + distance += _speed + acceleration; + inm1 = input[i]; + } + + } else { + + /* not sure that this is ever utilized - it implies that one of the input/output buffers is missing */ + + for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { + distance += _speed + acceleration; + } + } + + i = floor(distance); + phase[channel] = distance - floor(distance); - return data[channel].input_frames_used; + return i; }