X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;f=libs%2Fbackends%2Fdummy%2Fdummy_audiobackend.cc;h=94cd5f440aa157c9af92952f3fe041ef8fdc9b30;hb=14fcf86f037b9c66b2d7575e798fe07e4b2614d0;hp=1ba91f39dd313e67b03a591d2d558a28a2f7275e;hpb=e3cd57ecb634af33a6a86eb1ed57e270eddb1421;p=ardour.git diff --git a/libs/backends/dummy/dummy_audiobackend.cc b/libs/backends/dummy/dummy_audiobackend.cc index 1ba91f39dd..94cd5f440a 100644 --- a/libs/backends/dummy/dummy_audiobackend.cc +++ b/libs/backends/dummy/dummy_audiobackend.cc @@ -17,6 +17,7 @@ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ +#include #include #include #include @@ -25,14 +26,16 @@ #ifdef PLATFORM_WINDOWS #include +#include #endif #include "dummy_audiobackend.h" #include "dummy_midi_seq.h" #include "pbd/error.h" +#include "pbd/compose.h" #include "ardour/port_manager.h" -#include "i18n.h" +#include "pbd/i18n.h" using namespace ARDOUR; @@ -41,20 +44,11 @@ size_t DummyAudioBackend::_max_buffer_size = 8192; std::vector DummyAudioBackend::_midi_options; std::vector DummyAudioBackend::_device_status; -#ifdef PLATFORM_WINDOWS -static double _win_pc_rate = 0; // usec per tick -#endif +std::vector DummyAudioBackend::_driver_speed; static int64_t _x_get_monotonic_usec() { #ifdef PLATFORM_WINDOWS - if (_win_pc_rate > 0) { - LARGE_INTEGER Count; - // not very reliable, but the only realistic way for sub milli-seconds - if (QueryPerformanceCounter (&Count)) { - return (int64_t) (Count.QuadPart * _win_pc_rate); - } - return -1; - } + return PBD::get_microseconds(); #endif return g_get_monotonic_time(); } @@ -64,6 +58,7 @@ DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) , _running (false) , _freewheel (false) , _freewheeling (false) + , _speedup (1.0) , _device ("") , _samplerate (48000) , _samples_per_period (1024) @@ -81,6 +76,18 @@ DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) _instance_name = s_instance_name; _device = _("Silence"); pthread_mutex_init (&_port_callback_mutex, 0); + + if (_driver_speed.empty()) { + _driver_speed.push_back (DriverSpeed (_("Half Speed"), 2.0f)); + _driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f)); + _driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f)); + _driver_speed.push_back (DriverSpeed (_("5x Speed"), 0.2f)); + _driver_speed.push_back (DriverSpeed (_("10x Speed"), 0.1f)); + _driver_speed.push_back (DriverSpeed (_("15x Speed"), 0.06666f)); + _driver_speed.push_back (DriverSpeed (_("20x Speed"), 0.05f)); + _driver_speed.push_back (DriverSpeed (_("50x Speed"), 0.02f)); + } + } DummyAudioBackend::~DummyAudioBackend () @@ -93,7 +100,7 @@ DummyAudioBackend::~DummyAudioBackend () std::string DummyAudioBackend::name () const { - return X_("Dummy"); + return X_("Dummy"); // internal name } bool @@ -107,7 +114,10 @@ DummyAudioBackend::enumerate_devices () const { if (_device_status.empty()) { _device_status.push_back (DeviceStatus (_("Silence"), true)); + _device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true)); + _device_status.push_back (DeviceStatus (_("Demolition"), true)); _device_status.push_back (DeviceStatus (_("Sine Wave"), true)); + _device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true)); _device_status.push_back (DeviceStatus (_("Square Wave"), true)); _device_status.push_back (DeviceStatus (_("Impulses"), true)); _device_status.push_back (DeviceStatus (_("Uniform White Noise"), true)); @@ -118,6 +128,7 @@ DummyAudioBackend::enumerate_devices () const _device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true)); _device_status.push_back (DeviceStatus (_("Square Sweep"), true)); _device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true)); + _device_status.push_back (DeviceStatus (_("LTC"), true)); _device_status.push_back (DeviceStatus (_("Loopback"), true)); } return _device_status; @@ -173,7 +184,7 @@ DummyAudioBackend::available_output_channel_count (const std::string&) const bool DummyAudioBackend::can_change_sample_rate_when_running () const { - return true; + return false; } bool @@ -182,6 +193,41 @@ DummyAudioBackend::can_change_buffer_size_when_running () const return true; } +std::vector +DummyAudioBackend::enumerate_drivers () const +{ + std::vector speed_drivers; + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + speed_drivers.push_back (it->name); + } + return speed_drivers; +} + +std::string +DummyAudioBackend::driver_name () const +{ + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) { + return it->name; + } + } + assert (0); + return _("Normal Speed"); +} + +int +DummyAudioBackend::set_driver (const std::string& d) +{ + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + if (d == it->name) { + _speedup = it->speedup; + return 0; + } + } + assert (0); + return -1; +} + int DummyAudioBackend::set_device_name (const std::string& d) { @@ -201,7 +247,7 @@ DummyAudioBackend::set_sample_rate (float sr) int DummyAudioBackend::set_buffer_size (uint32_t bs) { - if (bs <= 0 || bs >= _max_buffer_size) { + if (bs <= 0 || bs > _max_buffer_size) { return -1; } _samples_per_period = bs; @@ -384,24 +430,28 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) { if (_running) { PBD::error << _("DummyAudioBackend: already active.") << endmsg; - return -1; + return BackendReinitializationError; } - if (_ports.size()) { + if (_ports.size () || _portmap.size ()) { PBD::warning << _("DummyAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; - for (std::vector::const_iterator it = _ports.begin (); it != _ports.end (); ++it) { + for (PortIndex::const_iterator it = _ports.begin (); it != _ports.end (); ++it) { PBD::info << _("DummyAudioBackend: port '") << (*it)->name () << "' exists." << endmsg; } + for (PortMap::const_iterator it = _portmap.begin (); it != _portmap.end (); ++it) { + PBD::info << _("DummyAudioBackend: portmap '") << (*it).first << "' exists." << endmsg; + } _system_inputs.clear(); _system_outputs.clear(); _system_midi_in.clear(); _system_midi_out.clear(); _ports.clear(); + _portmap.clear(); } if (register_system_ports()) { PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg; - return -1; + return PortRegistrationError; } engine.sample_rate_change (_samplerate); @@ -410,7 +460,7 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) if (engine.reestablish_ports ()) { PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg; stop (); - return -1; + return PortReconnectError; } engine.reconnect_ports (); @@ -425,10 +475,10 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) if (timeout == 0 || !_running) { PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg; - return -1; + return ProcessThreadStartError; } - return 0; + return NoError; } int @@ -588,7 +638,7 @@ DummyAudioBackend::my_name () const bool DummyAudioBackend::available () const { - return true; + return _running; } uint32_t @@ -600,11 +650,22 @@ DummyAudioBackend::port_name_size () const int DummyAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { + std::string newname (_instance_name + ":" + name); + if (!valid_port (port)) { PBD::error << _("DummyBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } - return static_cast(port)->set_name (_instance_name + ":" + name); + + if (find_port (newname)) { + PBD::error << _("DummyBackend::set_port_name: Port with given name already exists") << endmsg; + return -1; + } + + DummyPort* p = static_cast(port); + _portmap.erase (p->name()); + _portmap.insert (make_pair (newname, p)); + return p->set_name (newname); } std::string @@ -617,6 +678,37 @@ DummyAudioBackend::get_port_name (PortEngine::PortHandle port) const return static_cast(port)->name (); } +int +DummyAudioBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const +{ + if (!valid_port (port)) { + PBD::warning << _("DummyBackend::get_port_property: Invalid Port(s)") << endmsg; + return -1; + } + if (key == "http://jackaudio.org/metadata/pretty-name") { + type = ""; + value = static_cast(port)->pretty_name (); + if (!value.empty()) { + return 0; + } + } + return -1; +} + +int +DummyAudioBackend::set_port_property (PortHandle port, const std::string& key, const std::string& value, const std::string& type) +{ + if (!valid_port (port)) { + PBD::warning << _("DummyBackend::set_port_property: Invalid Port(s)") << endmsg; + return -1; + } + if (key == "http://jackaudio.org/metadata/pretty-name" && type.empty ()) { + static_cast(port)->set_pretty_name (value); + return 0; + } + return -1; +} + PortEngine::PortHandle DummyAudioBackend::get_port_by_name (const std::string& name) const { @@ -638,9 +730,10 @@ DummyAudioBackend::get_ports ( use_regexp = true; } } - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; - if ((port->type () == type) && (port->flags () & flags)) { + + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; + if ((port->type () == type) && flags == (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; @@ -701,7 +794,8 @@ DummyAudioBackend::add_port ( return 0; } - _ports.push_back (port); + _ports.insert (port); + _portmap.insert (make_pair (name, port)); return port; } @@ -715,12 +809,13 @@ DummyAudioBackend::unregister_port (PortEngine::PortHandle port_handle) return; } DummyPort* port = static_cast(port_handle); - std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); + PortIndex::iterator i = std::find (_ports.begin(), _ports.end(), static_cast(port_handle)); if (i == _ports.end ()) { PBD::error << _("DummyBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all(port_handle); + _portmap.erase (port->name()); _ports.erase (i); delete port; } @@ -740,6 +835,8 @@ DummyAudioBackend::register_system_ports() gt = DummyAudioPort::PonyNoise; } else if (_device == _("Sine Wave")) { gt = DummyAudioPort::SineWave; + } else if (_device == _("Sine Wave 1K, 1/3 Oct")) { + gt = DummyAudioPort::SineWaveOctaves; } else if (_device == _("Square Wave")) { gt = DummyAudioPort::SquareWave; } else if (_device == _("Impulses")) { @@ -752,8 +849,14 @@ DummyAudioBackend::register_system_ports() gt = DummyAudioPort::SquareSweep; } else if (_device == _("Square Sweep Swell")) { gt = DummyAudioPort::SquareSweepSwell; + } else if (_device == _("LTC")) { + gt = DummyAudioPort::LTC; } else if (_device == _("Loopback")) { gt = DummyAudioPort::Loopback; + } else if (_device == _("Demolition")) { + gt = DummyAudioPort::Demolition; + } else if (_device == _("DC -6dBFS (+.5)")) { + gt = DummyAudioPort::DC05; } else { gt = DummyAudioPort::Silence; } @@ -777,7 +880,10 @@ DummyAudioBackend::register_system_ports() if (!p) return -1; set_latency_range (p, false, lr); _system_inputs.push_back (static_cast(p)); - static_cast(p)->setup_generator (gt, _samplerate); + std::string name = static_cast(p)->setup_generator (gt, _samplerate, i - 1, a_ins); + if (!name.empty ()) { + static_cast(p)->set_pretty_name (name); + } } lr.min = lr.max = _systemic_output_latency; @@ -800,7 +906,10 @@ DummyAudioBackend::register_system_ports() set_latency_range (p, false, lr); _system_midi_in.push_back (static_cast(p)); if (_midi_mode == MidiGenerator) { - static_cast(p)->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate); + std::string name = static_cast(p)->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate); + if (!name.empty ()) { + static_cast(p)->set_pretty_name (name); + } } } @@ -812,6 +921,17 @@ DummyAudioBackend::register_system_ports() if (!p) return -1; set_latency_range (p, true, lr); _system_midi_out.push_back (static_cast(p)); + + if (_device == _("Loopback") && _midi_mode == MidiToAudio) { + std::stringstream ss; + ss << "Midi2Audio"; + for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) { + if ((apc % m_out) + 1 == i) { + ss << " >" << (apc + 1); + } + } + static_cast(p)->set_pretty_name (ss.str()); + } } return 0; } @@ -824,14 +944,14 @@ DummyAudioBackend::unregister_ports (bool system_only) _system_midi_in.clear(); _system_midi_out.clear(); - for (std::vector::iterator i = _ports.begin (); i != _ports.end ();) { - DummyPort* port = *i; + for (PortIndex::iterator i = _ports.begin (); i != _ports.end ();) { + PortIndex::iterator cur = i++; + DummyPort* port = *cur; if (! system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); + _portmap.erase (port->name()); delete port; - i = _ports.erase (i); - } else { - ++i; + _ports.erase (cur); } } } @@ -920,10 +1040,12 @@ bool DummyAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { DummyPort* dst_port = find_port (dst); +#ifndef NDEBUG if (!valid_port (src) || !dst_port) { PBD::error << _("DummyBackend::connected_to: Invalid Port") << endmsg; return false; } +#endif return static_cast(src)->is_connected (dst_port); } @@ -947,9 +1069,9 @@ DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector& connected_ports = static_cast(port)->get_connections (); + const std::set& connected_ports = static_cast(port)->get_connections (); - for (std::vector::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { + for (std::set::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } @@ -960,7 +1082,7 @@ DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events, but always print warning - fprintf (stderr, "DummyMidiBuffer: it's too late for this event.\n"); + fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp); } dst.push_back (boost::shared_ptr(new DummyMidiEvent (timestamp, buffer, size))); +#if 0 // DEBUG MIDI EVENTS + printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size); + for (size_t xx = 0; xx < size; ++xx) { + printf(" %02x", buffer[xx]); + } + printf("\n"); +#endif return 0; } @@ -1091,8 +1220,8 @@ DummyAudioBackend::port_is_physical (PortEngine::PortHandle port) const void DummyAudioBackend::get_physical_outputs (DataType type, std::vector& port_names) { - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } @@ -1102,8 +1231,8 @@ DummyAudioBackend::get_physical_outputs (DataType type, std::vector void DummyAudioBackend::get_physical_inputs (DataType type, std::vector& port_names) { - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } @@ -1115,8 +1244,8 @@ DummyAudioBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; @@ -1136,8 +1265,8 @@ DummyAudioBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; @@ -1173,9 +1302,10 @@ DummyAudioBackend::main_process_thread () manager.registration_callback(); manager.graph_order_callback(); - int64_t clock1, clock2; - clock1 = _x_get_monotonic_usec(); + int64_t clock1; + clock1 = -1; while (_running) { + const size_t samples_per_period = _samples_per_period; if (_freewheeling != _freewheel) { _freewheel = _freewheeling; @@ -1190,17 +1320,17 @@ DummyAudioBackend::main_process_thread () (*it)->next_period(); } - if (engine.process_callback (_samples_per_period)) { + if (engine.process_callback (samples_per_period)) { return 0; } - _processed_samples += _samples_per_period; + _processed_samples += samples_per_period; if (_device == _("Loopback") && _midi_mode != MidiToAudio) { int opn = 0; int opc = _system_outputs.size(); for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { DummyAudioPort* op = _system_outputs[(opn % opc)]; - (*it)->fill_wavetable ((const float*)op->get_buffer (_samples_per_period), _samples_per_period); + (*it)->fill_wavetable ((const float*)op->get_buffer (samples_per_period), samples_per_period); } } @@ -1219,42 +1349,21 @@ DummyAudioBackend::main_process_thread () for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { DummyMidiPort* op = _system_midi_out[(opn % opc)]; op->get_buffer(0); // mix-down - (*it)->midi_to_wavetable (op->const_buffer(), _samples_per_period); + (*it)->midi_to_wavetable (op->const_buffer(), samples_per_period); } } if (!_freewheel) { - const int64_t nominal_time = 1e6 * _samples_per_period / _samplerate; - clock2 = _x_get_monotonic_usec(); -#ifdef PLATFORM_WINDOWS - bool win_timers_ok = true; - /* querying the performance counter can fail occasionally (-1). - * Also on some multi-core systems, timers are CPU specific and not - * synchronized. We assume they differ more than a few milliseconds - * (4 * nominal cycle time) and simply ignore cases where the - * execution switches cores. - */ - if (clock1 < 0 || clock2 < 0 || (clock1 > clock2) || (clock2 - clock1) > 4 * nominal_time) { - clock2 = clock1 = 0; - win_timers_ok = false; - } -#endif - const int64_t elapsed_time = clock2 - clock1; -#ifdef PLATFORM_WINDOWS - if (win_timers_ok) -#endif - { // low pass filter - const float load = elapsed_time / (float) nominal_time; - if (load > _dsp_load) { - _dsp_load = load; - } else { - const float a = .1 * _samples_per_period / _samplerate; - _dsp_load = _dsp_load + a * (load - _dsp_load) + 1e-12; - } - } + _dsp_load_calc.set_max_time (_samplerate, samples_per_period); + _dsp_load_calc.set_start_timestamp_us (clock1); + _dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec()); + _dsp_load = _dsp_load_calc.get_dsp_load_unbound (); + const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us (); + const int64_t nominal_time = _dsp_load_calc.get_max_time_us (); if (elapsed_time < nominal_time) { - Glib::usleep (nominal_time - elapsed_time); + const int64_t sleepy = _speedup * (nominal_time - elapsed_time); + Glib::usleep (std::max ((int64_t) 100, sleepy)); } else { Glib::usleep (100); // don't hog cpu } @@ -1263,7 +1372,7 @@ DummyAudioBackend::main_process_thread () Glib::usleep (100); // don't hog cpu } - /* beginning of netx cycle */ + /* beginning of next cycle */ clock1 = _x_get_monotonic_usec(); bool connections_changed = false; @@ -1312,7 +1421,7 @@ static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { - "Dummy", + _("None (Dummy)"), instantiate, deinstantiate, backend_factory, @@ -1333,14 +1442,6 @@ static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; -#ifdef PLATFORM_WINDOWS - LARGE_INTEGER Frequency; - if (!QueryPerformanceFrequency(&Frequency) || Frequency.QuadPart < 1) { - _win_pc_rate = 0; - } else { - _win_pc_rate = 1000000.0 / Frequency.QuadPart; - } -#endif return 0; } @@ -1354,8 +1455,9 @@ deinstantiate () static bool already_configured () { - if (_instance) { - return _instance->is_running(); + // special-case: unit-tests require backend to be pre-configured. + if (s_instance_name == "Unit-Test") { + return true; } return false; } @@ -1436,7 +1538,7 @@ int DummyPort::connect (DummyPort *port) void DummyPort::_connect (DummyPort *port, bool callback) { - _connections.push_back (port); + _connections.insert (port); if (callback) { port->_connect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), true); @@ -1462,12 +1564,9 @@ int DummyPort::disconnect (DummyPort *port) void DummyPort::_disconnect (DummyPort *port, bool callback) { - std::vector::iterator it = std::find (_connections.begin (), _connections.end (), port); - + std::set::iterator it = _connections.find (port); assert (it != _connections.end ()); - _connections.erase (it); - if (callback) { port->_disconnect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), false); @@ -1478,21 +1577,22 @@ void DummyPort::_disconnect (DummyPort *port, bool callback) void DummyPort::disconnect_all () { while (!_connections.empty ()) { - _connections.back ()->_disconnect (this, false); - _dummy_backend.port_connect_callback (name(), _connections.back ()->name(), false); - _connections.pop_back (); + std::set::iterator it = _connections.begin (); + (*it)->_disconnect (this, false); + _dummy_backend.port_connect_callback (name(), (*it)->name(), false); + _connections.erase (it); } } bool DummyPort::is_connected (const DummyPort *port) const { - return std::find (_connections.begin (), _connections.end (), port) != _connections.end (); + return _connections.find (const_cast(port)) != _connections.end (); } bool DummyPort::is_physically_connected () const { - for (std::vector::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { + for (std::set::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } @@ -1512,6 +1612,7 @@ void DummyPort::setup_random_number_generator () _rseed = g_get_monotonic_time() % UINT_MAX; } _rseed = (_rseed + (uint64_t)this) % UINT_MAX; + if (_rseed == 0) _rseed = 1; } inline uint32_t @@ -1558,17 +1659,57 @@ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, P , _gen_count2 (0) , _pass (false) , _rn1 (0) + , _ltc (0) + , _ltcbuf (0) { memset (_buffer, 0, sizeof (_buffer)); } DummyAudioPort::~DummyAudioPort () { free(_wavetable); + ltc_encoder_free (_ltc); + delete _ltcbuf; _wavetable = 0; + _ltc = 0; + _ltcbuf = 0; } -void DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate) +static std::string format_hz (float freq) { + std::stringstream ss; + if (freq >= 10000) { + ss << std::setprecision (1) << std::fixed << freq / 1000 << "kHz"; + } else if (freq >= 1000) { + ss << std::setprecision (2) << std::fixed << freq / 1000 << "kHz"; + } else { + ss << std::setprecision (1) << std::fixed << freq << "Hz"; + } + return ss.str (); +} + +static size_t fit_wave (float freq, float rate, float precision = 0.001) { + const size_t max_mult = floor (freq * rate); + float minErr = 2; + size_t fact = 1; + for (size_t i = 1; i < max_mult; ++i) { + const float isc = rate * (float)i / freq; // ideal sample count + const float rsc = rintf (isc); // rounded sample count + const float err = fabsf (isc - rsc); + if (err < minErr) { + minErr = err; + fact = i; + } + if (err < precision) { + break; + } + } + //printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr); + return fact; +} + +std::string +DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total) { + std::string name; DummyPort::setup_random_number_generator(); _gen_type = g; @@ -1577,16 +1718,37 @@ void DummyAudioPort::setup_generator (GeneratorType const g, float const sampler case PonyNoise: case UniformWhiteNoise: case GaussianWhiteNoise: + case DC05: case Silence: break; + case Demolition: + _gen_period = 3 * samplerate; + break; case KronekerDelta: _gen_period = (5 + randi() % (int)(samplerate / 20.f)); + name = "Delta " + format_hz (samplerate / _gen_period); break; case SquareWave: _gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1; + name = "Square " + format_hz (samplerate / _gen_period); + break; + case SineWaveOctaves: + { + const int x = c - floor (((float)total / 2)); + float f = powf (2.f, x / 3.f) * 1000.f; + f = std::max (10.f, std::min (samplerate *.5f, f)); + const size_t mult = fit_wave (f, samplerate); + _gen_period = rintf ((float)mult * samplerate / f); + name = "Sine " + format_hz (samplerate * mult / (float)_gen_period); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS + } + } break; case SineWave: _gen_period = 5 + randi() % (int)(samplerate / 20.f); + name = "Sine " + format_hz (samplerate / _gen_period); _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); for (uint32_t i = 0 ; i < _gen_period; ++i) { _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS @@ -1641,10 +1803,49 @@ void DummyAudioPort::setup_generator (GeneratorType const g, float const sampler } } break; + case LTC: + switch (c % 4) { + case 0: + _ltc = ltc_encoder_create (samplerate, 25, LTC_TV_625_50, 0); + name = "LTC25"; + break; + case 1: + _ltc = ltc_encoder_create (samplerate, 30, LTC_TV_1125_60, 0); + name = "LTC30"; + break; + case 2: + _ltc = ltc_encoder_create (samplerate, 30001.f / 1001.f, LTC_TV_525_60, 0); + name = "LTC29df"; + break; + case 3: + _ltc = ltc_encoder_create (samplerate, 24, LTC_TV_FILM_24, 0); + name = "LTC24"; + break; + } + _ltc_spd = 1.0; + _ltc_rand = floor((float)c / 4) * .001f; + if (c < 4) { + name += " (locked)"; + } else { + name += " (varspd)"; + } + SMPTETimecode tc; + tc.years = 0; + tc.months = 0; + tc.days = 0; + tc.hours = (3 * (c / 4)) % 24; // XXX + tc.mins = 0; + tc.secs = 0; + tc.frame = 0; + ltc_encoder_set_timecode (_ltc, &tc); + name += string_compose ("@%1h", (int)tc.hours); + _ltcbuf = new RingBuffer (std::max (DummyAudioBackend::max_buffer_size() * 2.f, samplerate)); + break; case Loopback: _wavetable = (Sample*) malloc (DummyAudioBackend::max_buffer_size() * sizeof(Sample)); break; } + return name; } void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples) @@ -1699,6 +1900,23 @@ float DummyAudioPort::grandf () return r * x1; } +/* inspired by jack-demolition by Steve Harris */ +static const float _demolition[] = { + 0.0f, /* special case - 0dbFS white noise */ + 0.0f, /* zero, may cause denomrals following a signal */ + 0.73 / 1e45, /* very small - should be denormal when floated */ + 3.7f, /* arbitrary number > 0dBFS */ + -4.3f, /* arbitrary negative number > 0dBFS */ + 4294967395.0f, /* 2^16 + 100 */ + -4294967395.0f, + 3.402823466e+38F, /* HUGE, HUGEVALF, non-inf number */ + INFINITY, /* +inf */ + -INFINITY, /* -inf */ + -NAN, /* -nan */ + NAN, /* nan */ + 0.0f, /* some silence to check for recovery */ +}; + void DummyAudioPort::generate (const pframes_t n_samples) { Glib::Threads::Mutex::Lock lm (generator_lock); @@ -1710,6 +1928,30 @@ void DummyAudioPort::generate (const pframes_t n_samples) case Silence: memset (_buffer, 0, n_samples * sizeof (Sample)); break; + case DC05: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = 0.5f; + } + break; + case Demolition: + switch (_gen_count2) { + case 0: // noise + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = randf(); + } + break; + default: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = _demolition [_gen_count2]; + } + break; + } + _gen_offset += n_samples; + if (_gen_offset > _gen_period) { + _gen_offset = 0; + _gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float)); + } + break; case SquareWave: assert(_gen_period > 0); for (pframes_t i = 0 ; i < n_samples; ++i) { @@ -1737,7 +1979,7 @@ void DummyAudioPort::generate (const pframes_t n_samples) { const float vols = 2.f / (float)_gen_perio2; for (pframes_t i = 0; i < n_samples; ++i) { - const float g = fabsf (_gen_count2 * vols - 1.0); + const float g = fabsf (_gen_count2 * vols - 1.f); _buffer[i] = g * _wavetable[_gen_offset]; _gen_offset = (_gen_offset + 1) % _gen_period; _gen_count2 = (_gen_count2 + 1) % _gen_perio2; @@ -1745,8 +1987,10 @@ void DummyAudioPort::generate (const pframes_t n_samples) } break; case Loopback: - _gen_period = n_samples; // XXX DummyBackend::_samples_per_period; + memcpy((void*)_buffer, (void*)_wavetable, n_samples * sizeof(Sample)); + break; case SineWave: + case SineWaveOctaves: case SineSweep: case SquareSweep: assert(_wavetable && _gen_period > 0); @@ -1801,6 +2045,28 @@ void DummyAudioPort::generate (const pframes_t n_samples) _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f; } break; + case LTC: + while (_ltcbuf->read_space () < n_samples) { + // we should pre-allocate (or add a zero-copy libltc API), whatever. + ltcsnd_sample_t* enc_buf = (ltcsnd_sample_t*) malloc (ltc_encoder_get_buffersize (_ltc) * sizeof (ltcsnd_sample_t)); + for (int byteCnt = 0; byteCnt < 10; byteCnt++) { + if (_ltc_rand != 0.f) { + _ltc_spd += randf () * _ltc_rand; + _ltc_spd = std::min (1.5f, std::max (0.5f, _ltc_spd)); + } + ltc_encoder_encode_byte (_ltc, byteCnt, _ltc_spd); + const int len = ltc_encoder_get_buffer (_ltc, enc_buf); + for (int i = 0; i < len; ++i) { + const float v1 = enc_buf[i] - 128; + Sample v = v1 * 0.002; + _ltcbuf->write (&v, 1); + } + } + ltc_encoder_inc_timecode (_ltc); + free (enc_buf); + } + _ltcbuf->read (_buffer, n_samples); + break; } _gen_cycle = true; } @@ -1808,8 +2074,9 @@ void DummyAudioPort::generate (const pframes_t n_samples) void* DummyAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { - std::vector::const_iterator it = get_connections ().begin (); - if (it == get_connections ().end ()) { + const std::set& connections = get_connections (); + std::set::const_iterator it = connections.begin (); + if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { DummyAudioPort * source = static_cast(*it); @@ -1818,7 +2085,7 @@ void* DummyAudioPort::get_buffer (pframes_t n_samples) source->get_buffer(n_samples); // generate signal. } memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); - while (++it != get_connections ().end ()) { + while (++it != connections.end ()) { source = static_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); @@ -1869,13 +2136,15 @@ void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src) } } -void DummyMidiPort::setup_generator (int seq_id, const float sr) +std::string +DummyMidiPort::setup_generator (int seq_id, const float sr) { DummyPort::setup_random_number_generator(); _midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS]; _midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat. _midi_seq_pos = 0; _midi_seq_time = 0; + return DummyMidiData::sequence_names[seq_id]; } void DummyMidiPort::midi_generate (const pframes_t n_samples) @@ -1923,8 +2192,9 @@ void* DummyMidiPort::get_buffer (pframes_t n_samples) { if (is_input ()) { _buffer.clear (); - for (std::vector::const_iterator i = get_connections ().begin (); - i != get_connections ().end (); + const std::set& connections = get_connections (); + for (std::set::const_iterator i = connections.begin (); + i != connections.end (); ++i) { DummyMidiPort * source = static_cast(*i); if (source->is_physical() && source->is_terminal()) { @@ -1935,7 +2205,7 @@ void* DummyMidiPort::get_buffer (pframes_t n_samples) _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); } } - std::sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); + std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); } else if (is_output () && is_physical () && is_terminal()) { if (!_gen_cycle) { midi_generate(n_samples);