X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;f=libs%2Fbackends%2Fdummy%2Fdummy_audiobackend.cc;h=94cd5f440aa157c9af92952f3fe041ef8fdc9b30;hb=14fcf86f037b9c66b2d7575e798fe07e4b2614d0;hp=8cd7dac12c810f84d34abc28b0b9bb10cc2f4df2;hpb=2d634891962ce956611acadb2951ff020159b93a;p=ardour.git diff --git a/libs/backends/dummy/dummy_audiobackend.cc b/libs/backends/dummy/dummy_audiobackend.cc index 8cd7dac12c..94cd5f440a 100644 --- a/libs/backends/dummy/dummy_audiobackend.cc +++ b/libs/backends/dummy/dummy_audiobackend.cc @@ -17,17 +17,25 @@ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ +#include #include #include #include #include +#ifdef PLATFORM_WINDOWS +#include +#include +#endif + #include "dummy_audiobackend.h" +#include "dummy_midi_seq.h" #include "pbd/error.h" +#include "pbd/compose.h" #include "ardour/port_manager.h" -#include "i18n.h" +#include "pbd/i18n.h" using namespace ARDOUR; @@ -36,10 +44,21 @@ size_t DummyAudioBackend::_max_buffer_size = 8192; std::vector DummyAudioBackend::_midi_options; std::vector DummyAudioBackend::_device_status; +std::vector DummyAudioBackend::_driver_speed; + +static int64_t _x_get_monotonic_usec() { +#ifdef PLATFORM_WINDOWS + return PBD::get_microseconds(); +#endif + return g_get_monotonic_time(); +} + DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , _running (false) + , _freewheel (false) , _freewheeling (false) + , _speedup (1.0) , _device ("") , _samplerate (48000) , _samples_per_period (1024) @@ -48,13 +67,27 @@ DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) , _n_outputs (0) , _n_midi_inputs (0) , _n_midi_outputs (0) + , _midi_mode (MidiNoEvents) , _systemic_input_latency (0) , _systemic_output_latency (0) , _processed_samples (0) , _port_change_flag (false) { _instance_name = s_instance_name; + _device = _("Silence"); pthread_mutex_init (&_port_callback_mutex, 0); + + if (_driver_speed.empty()) { + _driver_speed.push_back (DriverSpeed (_("Half Speed"), 2.0f)); + _driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f)); + _driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f)); + _driver_speed.push_back (DriverSpeed (_("5x Speed"), 0.2f)); + _driver_speed.push_back (DriverSpeed (_("10x Speed"), 0.1f)); + _driver_speed.push_back (DriverSpeed (_("15x Speed"), 0.06666f)); + _driver_speed.push_back (DriverSpeed (_("20x Speed"), 0.05f)); + _driver_speed.push_back (DriverSpeed (_("50x Speed"), 0.02f)); + } + } DummyAudioBackend::~DummyAudioBackend () @@ -67,7 +100,7 @@ DummyAudioBackend::~DummyAudioBackend () std::string DummyAudioBackend::name () const { - return X_("Dummy"); + return X_("Dummy"); // internal name } bool @@ -81,10 +114,22 @@ DummyAudioBackend::enumerate_devices () const { if (_device_status.empty()) { _device_status.push_back (DeviceStatus (_("Silence"), true)); + _device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true)); + _device_status.push_back (DeviceStatus (_("Demolition"), true)); _device_status.push_back (DeviceStatus (_("Sine Wave"), true)); - _device_status.push_back (DeviceStatus (_("White Noise"), true)); + _device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true)); + _device_status.push_back (DeviceStatus (_("Square Wave"), true)); + _device_status.push_back (DeviceStatus (_("Impulses"), true)); + _device_status.push_back (DeviceStatus (_("Uniform White Noise"), true)); + _device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true)); + _device_status.push_back (DeviceStatus (_("Sine Sweep"), true)); + _device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true)); + _device_status.push_back (DeviceStatus (_("Square Sweep"), true)); + _device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true)); + _device_status.push_back (DeviceStatus (_("LTC"), true)); + _device_status.push_back (DeviceStatus (_("Loopback"), true)); } return _device_status; } @@ -139,7 +184,7 @@ DummyAudioBackend::available_output_channel_count (const std::string&) const bool DummyAudioBackend::can_change_sample_rate_when_running () const { - return true; + return false; } bool @@ -148,6 +193,41 @@ DummyAudioBackend::can_change_buffer_size_when_running () const return true; } +std::vector +DummyAudioBackend::enumerate_drivers () const +{ + std::vector speed_drivers; + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + speed_drivers.push_back (it->name); + } + return speed_drivers; +} + +std::string +DummyAudioBackend::driver_name () const +{ + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) { + return it->name; + } + } + assert (0); + return _("Normal Speed"); +} + +int +DummyAudioBackend::set_driver (const std::string& d) +{ + for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { + if (d == it->name) { + _speedup = it->speedup; + return 0; + } + } + assert (0); + return -1; +} + int DummyAudioBackend::set_device_name (const std::string& d) { @@ -167,10 +247,32 @@ DummyAudioBackend::set_sample_rate (float sr) int DummyAudioBackend::set_buffer_size (uint32_t bs) { - if (bs <= 0 || bs >= _max_buffer_size) { + if (bs <= 0 || bs > _max_buffer_size) { return -1; } _samples_per_period = bs; + + /* update port latencies + * with 'Loopback' there is exactly once cycle latency, + * divide it between In + Out; + */ + LatencyRange lr; + lr.min = lr.max = _systemic_input_latency; + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { + set_latency_range (*it, false, lr); + } + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { + set_latency_range (*it, false, lr); + } + + lr.min = lr.max = _systemic_output_latency; + for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { + set_latency_range (*it, true, lr); + } + for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { + set_latency_range (*it, true, lr); + } + engine.buffer_size_change (bs); return 0; } @@ -265,9 +367,13 @@ std::vector DummyAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { - _midi_options.push_back (_("1 in, 1 out")); - _midi_options.push_back (_("2 in, 2 out")); - _midi_options.push_back (_("8 in, 8 out")); + _midi_options.push_back (_("1 in, 1 out, Silence")); + _midi_options.push_back (_("2 in, 2 out, Silence")); + _midi_options.push_back (_("8 in, 8 out, Silence")); + _midi_options.push_back (_("Midi Event Generators")); + _midi_options.push_back (_("8 in, 8 out, Loopback")); + _midi_options.push_back (_("MIDI to Audio, Loopback")); + _midi_options.push_back (_("No MIDI I/O")); } return _midi_options; } @@ -275,14 +381,27 @@ DummyAudioBackend::enumerate_midi_options () const int DummyAudioBackend::set_midi_option (const std::string& opt) { - if (opt == _("1 in, 1 out")) { + _midi_mode = MidiNoEvents; + if (opt == _("1 in, 1 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 1; } - else if (opt == _("2 in, 2 out")) { + else if (opt == _("2 in, 2 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 2; } - else if (opt == _("8 in, 8 out")) { + else if (opt == _("8 in, 8 out, Silence")) { + _n_midi_inputs = _n_midi_outputs = 8; + } + else if (opt == _("Midi Event Generators")) { + _n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS; + _midi_mode = MidiGenerator; + } + else if (opt == _("8 in, 8 out, Loopback")) { _n_midi_inputs = _n_midi_outputs = 8; + _midi_mode = MidiLoopback; + } + else if (opt == _("MIDI to Audio, Loopback")) { + _n_midi_inputs = _n_midi_outputs = UINT32_MAX; + _midi_mode = MidiToAudio; } else { _n_midi_inputs = _n_midi_outputs = 0; @@ -311,18 +430,28 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) { if (_running) { PBD::error << _("DummyAudioBackend: already active.") << endmsg; - return -1; + return BackendReinitializationError; } - if (_ports.size()) { + if (_ports.size () || _portmap.size ()) { PBD::warning << _("DummyAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; + for (PortIndex::const_iterator it = _ports.begin (); it != _ports.end (); ++it) { + PBD::info << _("DummyAudioBackend: port '") << (*it)->name () << "' exists." << endmsg; + } + for (PortMap::const_iterator it = _portmap.begin (); it != _portmap.end (); ++it) { + PBD::info << _("DummyAudioBackend: portmap '") << (*it).first << "' exists." << endmsg; + } _system_inputs.clear(); + _system_outputs.clear(); + _system_midi_in.clear(); + _system_midi_out.clear(); _ports.clear(); + _portmap.clear(); } if (register_system_ports()) { PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg; - return -1; + return PortRegistrationError; } engine.sample_rate_change (_samplerate); @@ -331,7 +460,7 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) if (engine.reestablish_ports ()) { PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg; stop (); - return -1; + return PortReconnectError; } engine.reconnect_ports (); @@ -346,10 +475,10 @@ DummyAudioBackend::_start (bool /*for_latency_measurement*/) if (timeout == 0 || !_running) { PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg; - return -1; + return ProcessThreadStartError; } - return 0; + return NoError; } int @@ -365,18 +494,14 @@ DummyAudioBackend::stop () PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg; return -1; } - unregister_system_ports(); + unregister_ports(); return 0; } int DummyAudioBackend::freewheel (bool onoff) { - if (onoff == _freewheeling) { - return 0; - } _freewheeling = onoff; - engine.freewheel_callback (onoff); return 0; } @@ -399,13 +524,13 @@ DummyAudioBackend::raw_buffer_size (DataType t) } /* Process time */ -pframes_t +framepos_t DummyAudioBackend::sample_time () { return _processed_samples; } -pframes_t +framepos_t DummyAudioBackend::sample_time_at_cycle_start () { return _processed_samples; @@ -470,6 +595,10 @@ DummyAudioBackend::join_process_threads () bool DummyAudioBackend::in_process_thread () { + if (pthread_equal (_main_thread, pthread_self()) != 0) { + return true; + } + for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { @@ -509,7 +638,7 @@ DummyAudioBackend::my_name () const bool DummyAudioBackend::available () const { - return true; + return _running; } uint32_t @@ -521,11 +650,22 @@ DummyAudioBackend::port_name_size () const int DummyAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { + std::string newname (_instance_name + ":" + name); + if (!valid_port (port)) { PBD::error << _("DummyBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } - return static_cast(port)->set_name (_instance_name + ":" + name); + + if (find_port (newname)) { + PBD::error << _("DummyBackend::set_port_name: Port with given name already exists") << endmsg; + return -1; + } + + DummyPort* p = static_cast(port); + _portmap.erase (p->name()); + _portmap.insert (make_pair (newname, p)); + return p->set_name (newname); } std::string @@ -538,6 +678,37 @@ DummyAudioBackend::get_port_name (PortEngine::PortHandle port) const return static_cast(port)->name (); } +int +DummyAudioBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const +{ + if (!valid_port (port)) { + PBD::warning << _("DummyBackend::get_port_property: Invalid Port(s)") << endmsg; + return -1; + } + if (key == "http://jackaudio.org/metadata/pretty-name") { + type = ""; + value = static_cast(port)->pretty_name (); + if (!value.empty()) { + return 0; + } + } + return -1; +} + +int +DummyAudioBackend::set_port_property (PortHandle port, const std::string& key, const std::string& value, const std::string& type) +{ + if (!valid_port (port)) { + PBD::warning << _("DummyBackend::set_port_property: Invalid Port(s)") << endmsg; + return -1; + } + if (key == "http://jackaudio.org/metadata/pretty-name" && type.empty ()) { + static_cast(port)->set_pretty_name (value); + return 0; + } + return -1; +} + PortEngine::PortHandle DummyAudioBackend::get_port_by_name (const std::string& name) const { @@ -559,9 +730,10 @@ DummyAudioBackend::get_ports ( use_regexp = true; } } - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; - if ((port->type () == type) && (port->flags () & flags)) { + + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; + if ((port->type () == type) && flags == (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; @@ -591,6 +763,9 @@ DummyAudioBackend::register_port ( { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } + if (!_running) { + PBD::info << _("DummyBackend::register_port: Engine is not running.") << endmsg; + } return add_port (_instance_name + ":" + name, type, flags); } @@ -619,7 +794,8 @@ DummyAudioBackend::add_port ( return 0; } - _ports.push_back (port); + _ports.insert (port); + _portmap.insert (make_pair (name, port)); return port; } @@ -627,16 +803,19 @@ DummyAudioBackend::add_port ( void DummyAudioBackend::unregister_port (PortEngine::PortHandle port_handle) { - if (!valid_port (port_handle)) { - PBD::error << _("DummyBackend::unregister_port: Invalid Port.") << endmsg; + if (!_running) { + PBD::info << _("DummyBackend::unregister_port: Engine is not running.") << endmsg; + assert (!valid_port (port_handle)); + return; } DummyPort* port = static_cast(port_handle); - std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); + PortIndex::iterator i = std::find (_ports.begin(), _ports.end(), static_cast(port_handle)); if (i == _ports.end ()) { PBD::error << _("DummyBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all(port_handle); + _portmap.erase (port->name()); _ports.erase (i); delete port; } @@ -646,25 +825,54 @@ DummyAudioBackend::register_system_ports() { LatencyRange lr; enum DummyAudioPort::GeneratorType gt; - if (_device == _("White Noise")) { - gt = DummyAudioPort::WhiteNoise; + if (_device == _("Uniform White Noise")) { + gt = DummyAudioPort::UniformWhiteNoise; + } else if (_device == _("Gaussian White Noise")) { + gt = DummyAudioPort::GaussianWhiteNoise; } else if (_device == _("Pink Noise")) { gt = DummyAudioPort::PinkNoise; } else if (_device == _("Pink Noise (low CPU)")) { gt = DummyAudioPort::PonyNoise; } else if (_device == _("Sine Wave")) { gt = DummyAudioPort::SineWave; + } else if (_device == _("Sine Wave 1K, 1/3 Oct")) { + gt = DummyAudioPort::SineWaveOctaves; + } else if (_device == _("Square Wave")) { + gt = DummyAudioPort::SquareWave; + } else if (_device == _("Impulses")) { + gt = DummyAudioPort::KronekerDelta; + } else if (_device == _("Sine Sweep")) { + gt = DummyAudioPort::SineSweep; + } else if (_device == _("Sine Sweep Swell")) { + gt = DummyAudioPort::SineSweepSwell; + } else if (_device == _("Square Sweep")) { + gt = DummyAudioPort::SquareSweep; + } else if (_device == _("Square Sweep Swell")) { + gt = DummyAudioPort::SquareSweepSwell; + } else if (_device == _("LTC")) { + gt = DummyAudioPort::LTC; + } else if (_device == _("Loopback")) { + gt = DummyAudioPort::Loopback; + } else if (_device == _("Demolition")) { + gt = DummyAudioPort::Demolition; + } else if (_device == _("DC -6dBFS (+.5)")) { + gt = DummyAudioPort::DC05; } else { gt = DummyAudioPort::Silence; } + if (_midi_mode == MidiToAudio) { + gt = DummyAudioPort::Loopback; + } + const int a_ins = _n_inputs > 0 ? _n_inputs : 8; const int a_out = _n_outputs > 0 ? _n_outputs : 8; - const int m_ins = _n_midi_inputs > 0 ? _n_midi_inputs : 2; - const int m_out = _n_midi_outputs > 0 ? _n_midi_outputs : 2; + const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs; + const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs; + /* audio ports */ - lr.min = lr.max = _samples_per_period + _systemic_input_latency; + lr.min = lr.max = _systemic_input_latency; for (int i = 1; i <= a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i); @@ -672,51 +880,78 @@ DummyAudioBackend::register_system_ports() if (!p) return -1; set_latency_range (p, false, lr); _system_inputs.push_back (static_cast(p)); - static_cast(p)->setup_generator (gt, _samplerate); + std::string name = static_cast(p)->setup_generator (gt, _samplerate, i - 1, a_ins); + if (!name.empty ()) { + static_cast(p)->set_pretty_name (name); + } } - lr.min = lr.max = _samples_per_period + _systemic_output_latency; + lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); + _system_outputs.push_back (static_cast(p)); } /* midi ports */ - lr.min = lr.max = _samples_per_period + _systemic_input_latency; - for (int i = 1; i <= m_ins; ++i) { + lr.min = lr.max = _systemic_input_latency; + for (int i = 0; i < m_ins; ++i) { char tmp[64]; - snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i); + snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); + _system_midi_in.push_back (static_cast(p)); + if (_midi_mode == MidiGenerator) { + std::string name = static_cast(p)->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate); + if (!name.empty ()) { + static_cast(p)->set_pretty_name (name); + } + } } - lr.min = lr.max = _samples_per_period + _systemic_output_latency; + lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= m_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); + _system_midi_out.push_back (static_cast(p)); + + if (_device == _("Loopback") && _midi_mode == MidiToAudio) { + std::stringstream ss; + ss << "Midi2Audio"; + for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) { + if ((apc % m_out) + 1 == i) { + ss << " >" << (apc + 1); + } + } + static_cast(p)->set_pretty_name (ss.str()); + } } return 0; } void -DummyAudioBackend::unregister_system_ports() +DummyAudioBackend::unregister_ports (bool system_only) { - size_t i = 0; _system_inputs.clear(); - while (i < _ports.size ()) { - DummyPort* port = _ports[i]; - if (port->is_physical () && port->is_terminal ()) { + _system_outputs.clear(); + _system_midi_in.clear(); + _system_midi_out.clear(); + + for (PortIndex::iterator i = _ports.begin (); i != _ports.end ();) { + PortIndex::iterator cur = i++; + DummyPort* port = *cur; + if (! system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); - _ports.erase (_ports.begin() + i); - } else { - ++i; + _portmap.erase (port->name()); + delete port; + _ports.erase (cur); } } } @@ -805,10 +1040,12 @@ bool DummyAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { DummyPort* dst_port = find_port (dst); +#ifndef NDEBUG if (!valid_port (src) || !dst_port) { PBD::error << _("DummyBackend::connected_to: Invalid Port") << endmsg; return false; } +#endif return static_cast(src)->is_connected (dst_port); } @@ -832,9 +1069,9 @@ DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector& connected_ports = static_cast(port)->get_connections (); + const std::set& connected_ports = static_cast(port)->get_connections (); - for (std::vector::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { + for (std::set::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } @@ -845,7 +1082,7 @@ DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { - fprintf (stderr, "DummyMidiBuffer: it's too late for this event.\n"); - return -1; + // nevermind, ::get_buffer() sorts events, but always print warning + fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp); } dst.push_back (boost::shared_ptr(new DummyMidiEvent (timestamp, buffer, size))); +#if 0 // DEBUG MIDI EVENTS + printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size); + for (size_t xx = 0; xx < size; ++xx) { + printf(" %02x", buffer[xx]); + } + printf("\n"); +#endif return 0; } @@ -933,14 +1177,32 @@ DummyAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_play LatencyRange DummyAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { + LatencyRange r; if (!valid_port (port)) { PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg; - LatencyRange r; r.min = 0; r.max = 0; return r; } - return static_cast(port)->latency_range (for_playback); + DummyPort *p = static_cast(port); + assert(p); + + r = p->latency_range (for_playback); + if (p->is_physical() && p->is_terminal()) { + if (p->is_input() && for_playback) { + const size_t l_in = _samples_per_period * .25; + r.min += l_in; + r.max += l_in; + } + if (p->is_output() && !for_playback) { + /* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */ + const size_t l_in = _samples_per_period * .25; + const size_t l_out = _samples_per_period - l_in; + r.min += l_out; + r.max += l_out; + } + } + return r; } /* Discovering physical ports */ @@ -958,8 +1220,8 @@ DummyAudioBackend::port_is_physical (PortEngine::PortHandle port) const void DummyAudioBackend::get_physical_outputs (DataType type, std::vector& port_names) { - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } @@ -969,8 +1231,8 @@ DummyAudioBackend::get_physical_outputs (DataType type, std::vector void DummyAudioBackend::get_physical_inputs (DataType type, std::vector& port_names) { - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } @@ -982,8 +1244,8 @@ DummyAudioBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; @@ -1003,8 +1265,8 @@ DummyAudioBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; - for (size_t i = 0; i < _ports.size (); ++i) { - DummyPort* port = _ports[i]; + for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { + DummyPort* port = *i; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; @@ -1040,34 +1302,78 @@ DummyAudioBackend::main_process_thread () manager.registration_callback(); manager.graph_order_callback(); - uint64_t clock1, clock2; - clock1 = g_get_monotonic_time(); + int64_t clock1; + clock1 = -1; while (_running) { + const size_t samples_per_period = _samples_per_period; + + if (_freewheeling != _freewheel) { + _freewheel = _freewheeling; + engine.freewheel_callback (_freewheel); + } // re-set input buffers, generate on demand. for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { (*it)->next_period(); } + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { + (*it)->next_period(); + } - if (engine.process_callback (_samples_per_period)) { + if (engine.process_callback (samples_per_period)) { return 0; } - _processed_samples += _samples_per_period; - if (!_freewheeling) { - clock2 = g_get_monotonic_time(); - const int64_t elapsed_time = clock2 - clock1; - const int64_t nomial_time = 1e6 * _samples_per_period / _samplerate; - _dsp_load = elapsed_time / (float) nomial_time; - if (elapsed_time < nomial_time) { - Glib::usleep (nomial_time - elapsed_time); + _processed_samples += samples_per_period; + + if (_device == _("Loopback") && _midi_mode != MidiToAudio) { + int opn = 0; + int opc = _system_outputs.size(); + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { + DummyAudioPort* op = _system_outputs[(opn % opc)]; + (*it)->fill_wavetable ((const float*)op->get_buffer (samples_per_period), samples_per_period); + } + } + + if (_midi_mode == MidiLoopback) { + int opn = 0; + int opc = _system_midi_out.size(); + for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) { + DummyMidiPort* op = _system_midi_out[(opn % opc)]; + op->get_buffer(0); // mix-down + (*it)->set_loopback (op->const_buffer()); + } + } + else if (_midi_mode == MidiToAudio) { + int opn = 0; + int opc = _system_midi_out.size(); + for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { + DummyMidiPort* op = _system_midi_out[(opn % opc)]; + op->get_buffer(0); // mix-down + (*it)->midi_to_wavetable (op->const_buffer(), samples_per_period); + } + } + + if (!_freewheel) { + _dsp_load_calc.set_max_time (_samplerate, samples_per_period); + _dsp_load_calc.set_start_timestamp_us (clock1); + _dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec()); + _dsp_load = _dsp_load_calc.get_dsp_load_unbound (); + + const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us (); + const int64_t nominal_time = _dsp_load_calc.get_max_time_us (); + if (elapsed_time < nominal_time) { + const int64_t sleepy = _speedup * (nominal_time - elapsed_time); + Glib::usleep (std::max ((int64_t) 100, sleepy)); } else { Glib::usleep (100); // don't hog cpu } } else { - _dsp_load = 1.0; + _dsp_load = 1.0f; Glib::usleep (100); // don't hog cpu } - clock1 = g_get_monotonic_time(); + + /* beginning of next cycle */ + clock1 = _x_get_monotonic_usec(); bool connections_changed = false; bool ports_changed = false; @@ -1112,13 +1418,15 @@ static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); +static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { - "Dummy", + _("None (Dummy)"), instantiate, deinstantiate, backend_factory, already_configured, + available }; static boost::shared_ptr @@ -1147,9 +1455,19 @@ deinstantiate () static bool already_configured () { + // special-case: unit-tests require backend to be pre-configured. + if (s_instance_name == "Unit-Test") { + return true; + } return false; } +static bool +available () +{ + return true; +} + extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; @@ -1161,6 +1479,8 @@ DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags f : _dummy_backend (b) , _name (name) , _flags (flags) + , _rseed (0) + , _gen_cycle (false) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; @@ -1218,7 +1538,7 @@ int DummyPort::connect (DummyPort *port) void DummyPort::_connect (DummyPort *port, bool callback) { - _connections.push_back (port); + _connections.insert (port); if (callback) { port->_connect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), true); @@ -1244,12 +1564,9 @@ int DummyPort::disconnect (DummyPort *port) void DummyPort::_disconnect (DummyPort *port, bool callback) { - std::vector::iterator it = std::find (_connections.begin (), _connections.end (), port); - + std::set::iterator it = _connections.find (port); assert (it != _connections.end ()); - _connections.erase (it); - if (callback) { port->_disconnect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), false); @@ -1260,21 +1577,22 @@ void DummyPort::_disconnect (DummyPort *port, bool callback) void DummyPort::disconnect_all () { while (!_connections.empty ()) { - _connections.back ()->_disconnect (this, false); - _dummy_backend.port_connect_callback (name(), _connections.back ()->name(), false); - _connections.pop_back (); + std::set::iterator it = _connections.begin (); + (*it)->_disconnect (this, false); + _dummy_backend.port_connect_callback (name(), (*it)->name(), false); + _connections.erase (it); } } bool DummyPort::is_connected (const DummyPort *port) const { - return std::find (_connections.begin (), _connections.end (), port) != _connections.end (); + return _connections.find (const_cast(port)) != _connections.end (); } bool DummyPort::is_physically_connected () const { - for (std::vector::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { + for (std::set::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } @@ -1282,12 +1600,51 @@ bool DummyPort::is_physically_connected () const return false; } +void DummyPort::setup_random_number_generator () +{ +#ifdef PLATFORM_WINDOWS + LARGE_INTEGER Count; + if (QueryPerformanceCounter (&Count)) { + _rseed = Count.QuadPart % UINT_MAX; + } else +#endif + { + _rseed = g_get_monotonic_time() % UINT_MAX; + } + _rseed = (_rseed + (uint64_t)this) % UINT_MAX; + if (_rseed == 0) _rseed = 1; +} + +inline uint32_t +DummyPort::randi () +{ + // 31bit Park-Miller-Carta Pseudo-Random Number Generator + // http://www.firstpr.com.au/dsp/rand31/ + uint32_t hi, lo; + lo = 16807 * (_rseed & 0xffff); + hi = 16807 * (_rseed >> 16); + + lo += (hi & 0x7fff) << 16; + lo += hi >> 15; +#if 1 + lo = (lo & 0x7fffffff) + (lo >> 31); +#else + if (lo > 0x7fffffff) { lo -= 0x7fffffff; } +#endif + return (_rseed = lo); +} + +inline float +DummyPort::randf () +{ + return (randi() / 1073741824.f) - 1.f; +} + /******************************************************************************/ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) , _gen_type (Silence) - , _gen_cycle (false) , _b0 (0) , _b1 (0) , _b2 (0) @@ -1296,65 +1653,227 @@ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, P , _b5 (0) , _b6 (0) , _wavetable (0) - , _tbl_length (0) - , _tbl_offset (0) + , _gen_period (0) + , _gen_offset (0) + , _gen_perio2 (0) + , _gen_count2 (0) , _pass (false) , _rn1 (0) + , _ltc (0) + , _ltcbuf (0) { memset (_buffer, 0, sizeof (_buffer)); } DummyAudioPort::~DummyAudioPort () { free(_wavetable); + ltc_encoder_free (_ltc); + delete _ltcbuf; _wavetable = 0; + _ltc = 0; + _ltcbuf = 0; +} + +static std::string format_hz (float freq) { + std::stringstream ss; + if (freq >= 10000) { + ss << std::setprecision (1) << std::fixed << freq / 1000 << "kHz"; + } else if (freq >= 1000) { + ss << std::setprecision (2) << std::fixed << freq / 1000 << "kHz"; + } else { + ss << std::setprecision (1) << std::fixed << freq << "Hz"; + } + return ss.str (); +} + +static size_t fit_wave (float freq, float rate, float precision = 0.001) { + const size_t max_mult = floor (freq * rate); + float minErr = 2; + size_t fact = 1; + for (size_t i = 1; i < max_mult; ++i) { + const float isc = rate * (float)i / freq; // ideal sample count + const float rsc = rintf (isc); // rounded sample count + const float err = fabsf (isc - rsc); + if (err < minErr) { + minErr = err; + fact = i; + } + if (err < precision) { + break; + } + } + //printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr); + return fact; } -void DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate) +std::string +DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total) { + std::string name; + DummyPort::setup_random_number_generator(); _gen_type = g; - _rseed = g_get_monotonic_time() % UINT_MAX; switch (_gen_type) { case PinkNoise: case PonyNoise: - case WhiteNoise: + case UniformWhiteNoise: + case GaussianWhiteNoise: + case DC05: case Silence: break; - case SineWave: + case Demolition: + _gen_period = 3 * samplerate; + break; + case KronekerDelta: + _gen_period = (5 + randi() % (int)(samplerate / 20.f)); + name = "Delta " + format_hz (samplerate / _gen_period); + break; + case SquareWave: + _gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1; + name = "Square " + format_hz (samplerate / _gen_period); + break; + case SineWaveOctaves: { - _tbl_length = 5 + randi() % (int)(samplerate / 20.f); - _wavetable = (Sample*) malloc( _tbl_length * sizeof(Sample)); - for (uint32_t i = 0 ; i < _tbl_length; ++i) { - _wavetable[i] = .12589f * sinf(2.0 * M_PI * (float)i / (float)_tbl_length); + const int x = c - floor (((float)total / 2)); + float f = powf (2.f, x / 3.f) * 1000.f; + f = std::max (10.f, std::min (samplerate *.5f, f)); + const size_t mult = fit_wave (f, samplerate); + _gen_period = rintf ((float)mult * samplerate / f); + name = "Sine " + format_hz (samplerate * mult / (float)_gen_period); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS } } break; - } -} - -inline uint32_t -DummyAudioPort::randi () -{ - // 31bit Park-Miller-Carta Pseudo-Random Number Generator - // http://www.firstpr.com.au/dsp/rand31/ - uint32_t hi, lo; - lo = 16807 * (_rseed & 0xffff); - hi = 16807 * (_rseed >> 16); - - lo += (hi & 0x7fff) << 16; - lo += hi >> 15; -#if 1 - lo = (lo & 0x7fffffff) + (lo >> 31); + case SineWave: + _gen_period = 5 + randi() % (int)(samplerate / 20.f); + name = "Sine " + format_hz (samplerate / _gen_period); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS + } + break; + case SquareSweep: + case SquareSweepSwell: + case SineSweep: + case SineSweepSwell: + { + _gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f); + _gen_period &= ~1; + _gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period + const double f_min = 20.; + const double f_max = samplerate * .5; + const double g_p2 = _gen_period * .5; +#ifdef LINEAR_SWEEP + const double b = (f_max - f_min) / (2. * samplerate * g_p2); + const double a = f_min / samplerate; #else - if (lo > 0x7fffffff) { lo -= 0x7fffffff; } + const double b = log (f_max / f_min) / g_p2; + const double a = f_min / (b * samplerate); #endif - return (_rseed = lo); -} - -inline float -DummyAudioPort::randf () -{ - return (randi() / 1073741824.f) - 1.f; + const uint32_t g_p2i = rint(g_p2); + _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); + for (uint32_t i = 0 ; i < g_p2i; ++i) { +#ifdef LINEAR_SWEEP + const double phase = i * (a + b * i); +#else + const double phase = a * exp (b * i) - a; +#endif + _wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase))); + } + for (uint32_t i = g_p2i; i < _gen_period; ++i) { + const uint32_t j = _gen_period - i; +#ifdef LINEAR_SWEEP + const double phase = j * (a + b * j); +#else + const double phase = a * exp (b * j) - a; +#endif + _wavetable[i] = -(float)sin (2. * M_PI * (phase - floor (phase))); + } + if (_gen_type == SquareSweep) { + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f; + } + } + else if (_gen_type == SquareSweepSwell) { + for (uint32_t i = 0 ; i < _gen_period; ++i) { + _wavetable[i] = _wavetable[i] < 0 ? -1 : 1; + } + } + } + break; + case LTC: + switch (c % 4) { + case 0: + _ltc = ltc_encoder_create (samplerate, 25, LTC_TV_625_50, 0); + name = "LTC25"; + break; + case 1: + _ltc = ltc_encoder_create (samplerate, 30, LTC_TV_1125_60, 0); + name = "LTC30"; + break; + case 2: + _ltc = ltc_encoder_create (samplerate, 30001.f / 1001.f, LTC_TV_525_60, 0); + name = "LTC29df"; + break; + case 3: + _ltc = ltc_encoder_create (samplerate, 24, LTC_TV_FILM_24, 0); + name = "LTC24"; + break; + } + _ltc_spd = 1.0; + _ltc_rand = floor((float)c / 4) * .001f; + if (c < 4) { + name += " (locked)"; + } else { + name += " (varspd)"; + } + SMPTETimecode tc; + tc.years = 0; + tc.months = 0; + tc.days = 0; + tc.hours = (3 * (c / 4)) % 24; // XXX + tc.mins = 0; + tc.secs = 0; + tc.frame = 0; + ltc_encoder_set_timecode (_ltc, &tc); + name += string_compose ("@%1h", (int)tc.hours); + _ltcbuf = new RingBuffer (std::max (DummyAudioBackend::max_buffer_size() * 2.f, samplerate)); + break; + case Loopback: + _wavetable = (Sample*) malloc (DummyAudioBackend::max_buffer_size() * sizeof(Sample)); + break; + } + return name; +} + +void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples) +{ + memset(_wavetable, 0, n_samples * sizeof(float)); + /* generate an audio spike for every midi message + * to verify layency-compensation alignment + * (here: midi-out playback-latency + audio-in capture-latency) + */ + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { + const pframes_t t = (*it)->timestamp(); + assert(t < n_samples); + // somewhat arbitrary mapping for quick visual feedback + float v = -.5f; + if ((*it)->size() == 3) { + const unsigned char *d = (*it)->const_data(); + if ((d[0] & 0xf0) == 0x90) { // note on + v = .25f + d[2] / 512.f; + } + else if ((d[0] & 0xf0) == 0x80) { // note off + v = .3f - d[2] / 640.f; + } + else if ((d[0] & 0xf0) == 0xb0) { // CC + v = -.1f - d[2] / 256.f; + } + } + _wavetable[t] += v; + } } float DummyAudioPort::grandf () @@ -1381,6 +1900,23 @@ float DummyAudioPort::grandf () return r * x1; } +/* inspired by jack-demolition by Steve Harris */ +static const float _demolition[] = { + 0.0f, /* special case - 0dbFS white noise */ + 0.0f, /* zero, may cause denomrals following a signal */ + 0.73 / 1e45, /* very small - should be denormal when floated */ + 3.7f, /* arbitrary number > 0dBFS */ + -4.3f, /* arbitrary negative number > 0dBFS */ + 4294967395.0f, /* 2^16 + 100 */ + -4294967395.0f, + 3.402823466e+38F, /* HUGE, HUGEVALF, non-inf number */ + INFINITY, /* +inf */ + -INFINITY, /* -inf */ + -NAN, /* -nan */ + NAN, /* nan */ + 0.0f, /* some silence to check for recovery */ +}; + void DummyAudioPort::generate (const pframes_t n_samples) { Glib::Threads::Mutex::Lock lm (generator_lock); @@ -1392,22 +1928,91 @@ void DummyAudioPort::generate (const pframes_t n_samples) case Silence: memset (_buffer, 0, n_samples * sizeof (Sample)); break; + case DC05: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = 0.5f; + } + break; + case Demolition: + switch (_gen_count2) { + case 0: // noise + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = randf(); + } + break; + default: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = _demolition [_gen_count2]; + } + break; + } + _gen_offset += n_samples; + if (_gen_offset > _gen_period) { + _gen_offset = 0; + _gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float)); + } + break; + case SquareWave: + assert(_gen_period > 0); + for (pframes_t i = 0 ; i < n_samples; ++i) { + if (_gen_offset < _gen_period * .5f) { + _buffer[i] = .40709f; // -6dBFS + } else { + _buffer[i] = -.40709f; + } + _gen_offset = (_gen_offset + 1) % _gen_period; + } + break; + case KronekerDelta: + assert(_gen_period > 0); + memset (_buffer, 0, n_samples * sizeof (Sample)); + for (pframes_t i = 0; i < n_samples; ++i) { + if (_gen_offset == 0) { + _buffer[i] = 1.0f; + } + _gen_offset = (_gen_offset + 1) % _gen_period; + } + break; + case SineSweepSwell: + case SquareSweepSwell: + assert(_wavetable && _gen_period > 0); + { + const float vols = 2.f / (float)_gen_perio2; + for (pframes_t i = 0; i < n_samples; ++i) { + const float g = fabsf (_gen_count2 * vols - 1.f); + _buffer[i] = g * _wavetable[_gen_offset]; + _gen_offset = (_gen_offset + 1) % _gen_period; + _gen_count2 = (_gen_count2 + 1) % _gen_perio2; + } + } + break; + case Loopback: + memcpy((void*)_buffer, (void*)_wavetable, n_samples * sizeof(Sample)); + break; case SineWave: - assert(_wavetable && _tbl_length > 0); + case SineWaveOctaves: + case SineSweep: + case SquareSweep: + assert(_wavetable && _gen_period > 0); { pframes_t written = 0; while (written < n_samples) { const uint32_t remain = n_samples - written; - const uint32_t to_copy = std::min(remain, _tbl_length - _tbl_offset); + const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset); memcpy((void*)&_buffer[written], - (void*)&_wavetable[_tbl_offset], + (void*)&_wavetable[_gen_offset], to_copy * sizeof(Sample)); written += to_copy; - _tbl_offset = (_tbl_offset + to_copy) % _tbl_length; + _gen_offset = (_gen_offset + to_copy) % _gen_period; } } break; - case WhiteNoise: + case UniformWhiteNoise: + for (pframes_t i = 0 ; i < n_samples; ++i) { + _buffer[i] = .158489f * randf(); + } + break; + case GaussianWhiteNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = .089125f * grandf(); } @@ -1425,8 +2030,8 @@ void DummyAudioPort::generate (const pframes_t n_samples) _b3 = .86650f * _b3 + white * .3104856f; _b4 = .55000f * _b4 + white * .5329522f; _b5 = -.7616f * _b5 - white * .0168980f; - _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362; - _b6 = white * 0.115926; + _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f; + _b6 = white * 0.115926f; } break; case PonyNoise: @@ -1434,12 +2039,34 @@ void DummyAudioPort::generate (const pframes_t n_samples) const float white = 0.0498f * randf (); // Paul Kellet's economy method // http://www.musicdsp.org/files/pink.txt - _b0 = 0.99765 * _b0 + white * 0.0990460; - _b1 = 0.96300 * _b1 + white * 0.2965164; - _b2 = 0.57000 * _b2 + white * 1.0526913; - _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848; + _b0 = 0.99765f * _b0 + white * 0.0990460f; + _b1 = 0.96300f * _b1 + white * 0.2965164f; + _b2 = 0.57000f * _b2 + white * 1.0526913f; + _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f; } break; + case LTC: + while (_ltcbuf->read_space () < n_samples) { + // we should pre-allocate (or add a zero-copy libltc API), whatever. + ltcsnd_sample_t* enc_buf = (ltcsnd_sample_t*) malloc (ltc_encoder_get_buffersize (_ltc) * sizeof (ltcsnd_sample_t)); + for (int byteCnt = 0; byteCnt < 10; byteCnt++) { + if (_ltc_rand != 0.f) { + _ltc_spd += randf () * _ltc_rand; + _ltc_spd = std::min (1.5f, std::max (0.5f, _ltc_spd)); + } + ltc_encoder_encode_byte (_ltc, byteCnt, _ltc_spd); + const int len = ltc_encoder_get_buffer (_ltc, enc_buf); + for (int i = 0; i < len; ++i) { + const float v1 = enc_buf[i] - 128; + Sample v = v1 * 0.002; + _ltcbuf->write (&v, 1); + } + } + ltc_encoder_inc_timecode (_ltc); + free (enc_buf); + } + _ltcbuf->read (_buffer, n_samples); + break; } _gen_cycle = true; } @@ -1447,8 +2074,9 @@ void DummyAudioPort::generate (const pframes_t n_samples) void* DummyAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { - std::vector::const_iterator it = get_connections ().begin (); - if (it == get_connections ().end ()) { + const std::set& connections = get_connections (); + std::set::const_iterator it = connections.begin (); + if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { DummyAudioPort * source = static_cast(*it); @@ -1457,7 +2085,7 @@ void* DummyAudioPort::get_buffer (pframes_t n_samples) source->get_buffer(n_samples); // generate signal. } memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); - while (++it != get_connections ().end ()) { + while (++it != connections.end ()) { source = static_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); @@ -1481,11 +2109,18 @@ void* DummyAudioPort::get_buffer (pframes_t n_samples) DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) + , _midi_seq_spb (0) + , _midi_seq_time (0) + , _midi_seq_pos (0) { _buffer.clear (); + _loopback.clear (); } -DummyMidiPort::~DummyMidiPort () { } +DummyMidiPort::~DummyMidiPort () { + _buffer.clear (); + _loopback.clear (); +} struct MidiEventSorter { bool operator() (const boost::shared_ptr& a, const boost::shared_ptr& b) { @@ -1493,21 +2128,88 @@ struct MidiEventSorter { } }; -void* DummyMidiPort::get_buffer (pframes_t /* nframes */) +void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src) +{ + _loopback.clear (); + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { + _loopback.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); + } +} + +std::string +DummyMidiPort::setup_generator (int seq_id, const float sr) +{ + DummyPort::setup_random_number_generator(); + _midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS]; + _midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat. + _midi_seq_pos = 0; + _midi_seq_time = 0; + return DummyMidiData::sequence_names[seq_id]; +} + +void DummyMidiPort::midi_generate (const pframes_t n_samples) +{ + Glib::Threads::Mutex::Lock lm (generator_lock); + if (_gen_cycle) { + return; + } + + _buffer.clear (); + _gen_cycle = true; + + if (_midi_seq_spb == 0 || !_midi_seq_dat) { + for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) { + _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); + } + return; + } + + while (1) { + const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time; + if (ev_beat_time < 0) { + break; + } + if ((pframes_t) ev_beat_time >= n_samples) { + break; + } + _buffer.push_back (boost::shared_ptr(new DummyMidiEvent ( + ev_beat_time, + _midi_seq_dat[_midi_seq_pos].event, + _midi_seq_dat[_midi_seq_pos].size + ))); + ++_midi_seq_pos; + + if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) { + _midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb; + _midi_seq_pos = 0; + } + } + _midi_seq_time += n_samples; +} + + +void* DummyMidiPort::get_buffer (pframes_t n_samples) { if (is_input ()) { _buffer.clear (); - for (std::vector::const_iterator i = get_connections ().begin (); - i != get_connections ().end (); + const std::set& connections = get_connections (); + for (std::set::const_iterator i = connections.begin (); + i != connections.end (); ++i) { - const DummyMidiBuffer src = static_cast(*i)->const_buffer (); - for (DummyMidiBuffer::const_iterator it = src.begin (); it != src.end (); ++it) { + DummyMidiPort * source = static_cast(*i); + if (source->is_physical() && source->is_terminal()) { + source->get_buffer(n_samples); // generate signal. + } + const DummyMidiBuffer *src = source->const_buffer (); + for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); } } - std::sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); + std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); } else if (is_output () && is_physical () && is_terminal()) { - _buffer.clear (); + if (!_gen_cycle) { + midi_generate(n_samples); + } } return &_buffer; } @@ -1519,7 +2221,7 @@ DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, { if (size > 0) { _data = (uint8_t*) malloc (size); - memcpy (_data, data, size); + memcpy (_data, data, size); } }