X-Git-Url: https://main.carlh.net/gitweb/?a=blobdiff_plain;f=libs%2Fcanvas%2Fcurve.cc;h=511712d7c9ba3b779361f9382c43a93416e06a22;hb=fee026c5ef7107d5d594159f5ece5917041591f7;hp=172d1e8b9df2efebfbcc223bac156a512b5e4dec;hpb=f208593249c7bc1f139809aa32c8aa6320782af0;p=ardour.git diff --git a/libs/canvas/curve.cc b/libs/canvas/curve.cc index 172d1e8b9d..511712d7c9 100644 --- a/libs/canvas/curve.cc +++ b/libs/canvas/curve.cc @@ -20,8 +20,6 @@ #include #include -#include "pbd/xml++.h" - #include "canvas/curve.h" using namespace ArdourCanvas; @@ -31,8 +29,42 @@ using std::max; Curve::Curve (Group* parent) : Item (parent) , PolyItem (parent) + , Fill (parent) + , n_samples (0) + , n_segments (512) +{ + set_n_samples (256); +} + +/** Set the number of points to compute when we smooth the data points into a + * curve. + */ +void +Curve::set_n_samples (Points::size_type n) { + /* this only changes our appearance rather than the bounding box, so we + just need to schedule a redraw rather than notify the parent of any + changes + */ + n_samples = n; + samples.assign (n_samples, Duple (0.0, 0.0)); + interpolate (); +} +/** When rendering the curve, we will always draw a fixed number of straight + * line segments to span the x-axis extent of the curve. More segments: + * smoother visual rendering. Less rendering: closer to a visibily poly-line + * render. + */ +void +Curve::set_n_segments (uint32_t n) +{ + /* this only changes our appearance rather than the bounding box, so we + just need to schedule a redraw rather than notify the parent of any + changes + */ + n_segments = n; + redraw (); } void @@ -40,190 +72,352 @@ Curve::compute_bounding_box () const { PolyItem::compute_bounding_box (); - if (_bounding_box) { - - bool have1 = false; - bool have2 = false; - - Rect bbox1; - Rect bbox2; - - for (Points::const_iterator i = first_control_points.begin(); i != first_control_points.end(); ++i) { - if (have1) { - bbox1.x0 = min (bbox1.x0, i->x); - bbox1.y0 = min (bbox1.y0, i->y); - bbox1.x1 = max (bbox1.x1, i->x); - bbox1.y1 = max (bbox1.y1, i->y); - } else { - bbox1.x0 = bbox1.x1 = i->x; - bbox1.y0 = bbox1.y1 = i->y; - have1 = true; - } - } - - for (Points::const_iterator i = second_control_points.begin(); i != second_control_points.end(); ++i) { - if (have2) { - bbox2.x0 = min (bbox2.x0, i->x); - bbox2.y0 = min (bbox2.y0, i->y); - bbox2.x1 = max (bbox2.x1, i->x); - bbox2.y1 = max (bbox2.y1, i->y); - } else { - bbox2.x0 = bbox2.x1 = i->x; - bbox2.y0 = bbox2.y1 = i->y; - have2 = true; - } - } - - Rect u = bbox1.extend (bbox2); - _bounding_box = u.extend (_bounding_box.get()); - } - - _bounding_box_dirty = false; + /* possibly add extents of any point indicators here if we ever do that */ } void Curve::set (Points const& p) { PolyItem::set (p); - - first_control_points.clear (); - second_control_points.clear (); - - compute_control_points (_points, first_control_points, second_control_points); + interpolate (); } void -Curve::render (Rect const & area, Cairo::RefPtr context) const +Curve::interpolate () { - if (_outline) { - setup_outline_context (context); - render_path (area, context); - context->stroke (); + Points::size_type npoints = _points.size (); + + if (npoints < 3) { + return; } -} -XMLNode * -Curve::get_state () const -{ - XMLNode* node = new XMLNode ("PolyLine"); - add_poly_item_state (node); - add_outline_state (node); - return node; + Duple p; + double boundary; + + const double xfront = _points.front().x; + const double xextent = _points.back().x - xfront; + + /* initialize boundary curve points */ + + p = _points.front(); + boundary = round (((p.x - xfront)/xextent) * (n_samples - 1)); + + for (Points::size_type i = 0; i < boundary; ++i) { + samples[i] = Duple (i, p.y); + } + + p = _points.back(); + boundary = round (((p.x - xfront)/xextent) * (n_samples - 1)); + + for (Points::size_type i = boundary; i < n_samples; ++i) { + samples[i] = Duple (i, p.y); + } + + for (int i = 0; i < (int) npoints - 1; ++i) { + + Points::size_type p1, p2, p3, p4; + + p1 = max (i - 1, 0); + p2 = i; + p3 = i + 1; + p4 = min (i + 2, (int) npoints - 1); + + smooth (p1, p2, p3, p4, xfront, xextent); + } + + /* make sure that actual data points are used with their exact values */ + + for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { + uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1); + samples[idx].y = (*p).y; + } } +/* + * This function calculates the curve values between the control points + * p2 and p3, taking the potentially existing neighbors p1 and p4 into + * account. + * + * This function uses a cubic bezier curve for the individual segments and + * calculates the necessary intermediate control points depending on the + * neighbor curve control points. + * + */ + void -Curve::set_state (XMLNode const * node) +Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4, + double xfront, double xextent) { - set_poly_item_state (node); - set_outline_state (node); -} + int i; + double x0, x3; + double y0, y1, y2, y3; + double dx, dy; + double slope; -void -Curve::render_path (Rect const & area, Cairo::RefPtr context) const -{ - PolyItem::render_curve (area, context, first_control_points, second_control_points); -} + /* the outer control points for the bezier curve. */ -void -Curve::compute_control_points (Points const& knots, - Points& firstControlPoints, - Points& secondControlPoints) -{ - Points::size_type n = knots.size() - 1; - - if (n < 1) { + x0 = _points[p2].x; + y0 = _points[p2].y; + x3 = _points[p3].x; + y3 = _points[p3].y; + + /* + * the x values of the inner control points are fixed at + * x1 = 2/3*x0 + 1/3*x3 and x2 = 1/3*x0 + 2/3*x3 + * this ensures that the x values increase linearily with the + * parameter t and enables us to skip the calculation of the x + * values altogehter - just calculate y(t) evenly spaced. + */ + + dx = x3 - x0; + dy = y3 - y0; + + if (dx <= 0) { + /* error? */ return; } - - if (n == 1) { - /* Special case: Bezier curve should be a straight line. */ + + if (p1 == p2 && p3 == p4) { + /* No information about the neighbors, + * calculate y1 and y2 to get a straight line + */ + y1 = y0 + dy / 3.0; + y2 = y0 + dy * 2.0 / 3.0; + + } else if (p1 == p2 && p3 != p4) { + + /* only the right neighbor is available. Make the tangent at the + * right endpoint parallel to the line between the left endpoint + * and the right neighbor. Then point the tangent at the left towards + * the control handle of the right tangent, to ensure that the curve + * does not have an inflection point. + */ + slope = (_points[p4].y - y0) / (_points[p4].x - x0); + + y2 = y3 - slope * dx / 3.0; + y1 = y0 + (y2 - y0) / 2.0; + + } else if (p1 != p2 && p3 == p4) { + + /* see previous case */ + slope = (y3 - _points[p1].y) / (x3 - _points[p1].x); + + y1 = y0 + slope * dx / 3.0; + y2 = y3 + (y1 - y3) / 2.0; + + + } else /* (p1 != p2 && p3 != p4) */ { + + /* Both neighbors are available. Make the tangents at the endpoints + * parallel to the line between the opposite endpoint and the adjacent + * neighbor. + */ + + slope = (y3 - _points[p1].y) / (x3 - _points[p1].x); + + y1 = y0 + slope * dx / 3.0; + + slope = (_points[p4].y - y0) / (_points[p4].x - x0); + + y2 = y3 - slope * dx / 3.0; + } + + /* + * finally calculate the y(t) values for the given bezier values. We can + * use homogenously distributed values for t, since x(t) increases linearily. + */ + + dx = dx / xextent; + + int limit = round (dx * (n_samples - 1)); + const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1)); + + for (i = 0; i <= limit; i++) { + double y, t; + Points::size_type index; + + t = i / dx / (n_samples - 1); - Duple d; + y = y0 * (1-t) * (1-t) * (1-t) + + 3 * y1 * (1-t) * (1-t) * t + + 3 * y2 * (1-t) * t * t + + y3 * t * t * t; + + index = i + idx_offset; - d.x = (2.0 * knots[0].x + knots[1].x) / 3; - d.y = (2.0 * knots[0].y + knots[1].y) / 3; - firstControlPoints.push_back (d); + if (index < n_samples) { + Duple d (i, max (y, 0.0)); + samples[index] = d; + } + } +} + +/** Given a position within the x-axis range of the + * curve, return the corresponding y-axis value + */ + +double +Curve::map_value (double x) const +{ + if (x > 0.0 && x < 1.0) { + + double f; + Points::size_type index; - d.x = 2.0 * firstControlPoints[0].x - knots[0].x; - d.y = 2.0 * firstControlPoints[0].y - knots[0].y; - secondControlPoints.push_back (d); + /* linearly interpolate between two of our smoothed "samples" + */ - return; - } - - // Calculate first Bezier control points - // Right hand side vector - - std::vector rhs; - - rhs.assign (n, 0); - - // Set right hand side X values - - for (Points::size_type i = 1; i < n - 1; ++i) { - rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x; + x = x * (n_samples - 1); + index = (Points::size_type) x; // XXX: should we explicitly use floor()? + f = x - index; + + return (1.0 - f) * samples[index].y + f * samples[index+1].y; + + } else if (x >= 1.0) { + return samples.back().y; + } else { + return samples.front().y; } - rhs[0] = knots[0].x + 2 * knots[1].x; - rhs[n - 1] = (8 * knots[n - 1].x + knots[n].x) / 2.0; - - // Get first control points X-values - double* x = solve (rhs); +} - // Set right hand side Y values - for (Points::size_type i = 1; i < n - 1; ++i) { - rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y; +void +Curve::render (Rect const & area, Cairo::RefPtr context) const +{ + if (!_outline || _points.size() < 2) { + return; } - rhs[0] = knots[0].y + 2 * knots[1].y; - rhs[n - 1] = (8 * knots[n - 1].y + knots[n].y) / 2.0; - - // Get first control points Y-values - double* y = solve (rhs); + + /* Our approach is to always draw n_segments across our total size. + * + * This is very inefficient if we are asked to only draw a small + * section of the curve. For now we rely on cairo clipping to help + * with this. + */ - for (Points::size_type i = 0; i < n; ++i) { + double x; + double y; + + context->save (); + context->rectangle (area.x0, area.y0, area.width(),area.height()); + context->clip (); + + setup_outline_context (context); + + if (_points.size() == 2) { + + /* straight line */ + + Duple window_space; + + window_space = item_to_window (_points.front()); + context->move_to (window_space.x, window_space.y); + window_space = item_to_window (_points.back()); + context->line_to (window_space.x, window_space.y); + + } else { + + /* curve of at least 3 points */ + + const double xfront = _points.front().x; + const double xextent = _points.back().x - xfront; + + /* move through points to find the first one inside the + * rendering area + */ + + Points::const_iterator edge = _points.end(); + bool edge_found = false; + + for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { + Duple w (item_to_window (Duple ((*p).x, 0.0))); + if (w.x >= area.x0) { + edge_found = true; + break; + } + edge = p; + + } + + if (edge == _points.end()) { + if (edge_found) { + edge = _points.begin(); + } else { + return; + } + } + + std::cerr << "Start drawing " << distance (_points.begin(), edge) << " into points\n"; + + x = (*edge).x; + y = map_value (0.0); + + Duple window_space = item_to_window (Duple (x, y)); + context->move_to (window_space.x, window_space.y); - firstControlPoints.push_back (Duple (x[i], y[i])); + /* if the extent of this curve (in pixels) is small, then we don't need + * many segments. + */ - if (i < n - 1) { - secondControlPoints.push_back (Duple (2 * knots [i + 1].x - x[i + 1], - 2 * knots[i + 1].y - y[i + 1])); - } else { - secondControlPoints.push_back (Duple ((knots [n].x + x[n - 1]) / 2, - (knots[n].y + y[n - 1]) / 2)); + uint32_t nsegs = area.width(); + double last_x = 0; + double xoffset = (x-xfront)/xextent; + + // std::cerr << " draw " << nsegs << " segments\n"; + + for (uint32_t n = 1; n < nsegs; ++n) { + + /* compute item space x coordinate of the start of this segment */ + + x = xoffset + (n / (double) nsegs); + y = map_value (x); + + x += xfront + (xextent * x); + + // std::cerr << "hspan @ " << x << ' ' << x - last_x << std::endl; + last_x = x; + + window_space = item_to_window (Duple (x, y)); + context->line_to (window_space.x, window_space.y); + + if (window_space.x > area.x1) { + /* we're done - the last point was outside the redraw area along the x-axis */ + break; + } } } + + context->stroke (); + + /* add points */ - delete [] x; - delete [] y; -} + setup_fill_context (context); + for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { + Duple window_space (item_to_window (*p)); + context->arc (window_space.x, window_space.y, 5.0, 0.0, 2 * M_PI); + context->stroke (); + } -/** Solves a tridiagonal system for one of coordinates (x or y) - * of first Bezier control points. - */ + context->restore (); +} -double* -Curve::solve (std::vector const & rhs) +bool +Curve::covers (Duple const & pc) const { - std::vector::size_type n = rhs.size(); - double* x = new double[n]; // Solution vector. - double* tmp = new double[n]; // Temp workspace. - - double b = 2.0; + Duple point = canvas_to_item (pc); - x[0] = rhs[0] / b; + /* O(N) N = number of points, and not accurate */ - for (std::vector::size_type i = 1; i < n; i++) { - // Decomposition and forward substitution. - tmp[i] = 1 / b; - b = (i < n - 1 ? 4.0 : 3.5) - tmp[i]; - x[i] = (rhs[i] - x[i - 1]) / b; - } - - for (std::vector::size_type i = 1; i < n; i++) { - // Backsubstitution - x[n - i - 1] -= tmp[n - i] * x[n - i]; + for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { + + const Coord dx = point.x - (*p).x; + const Coord dy = point.y - (*p).y; + const Coord dx2 = dx * dx; + const Coord dy2 = dy * dy; + + if ((dx2 < 2.0 && dy2 < 2.0) || (dx2 + dy2 < 4.0)) { + return true; + } } - delete [] tmp; - - return x; + return false; }