restore session backwards compatibility to 3.3
[ardour.git] / libs / ardour / meter.cc
1 /*
2     Copyright (C) 2006 Paul Davis
3
4     This program is free software; you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by the Free
6     Software Foundation; either version 2 of the License, or (at your option)
7     any later version.
8
9     This program is distributed in the hope that it will be useful, but WITHOUT
10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License along
15     with this program; if not, write to the Free Software Foundation, Inc.,
16     675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19 #include <algorithm>
20 #include <cmath>
21
22 #include "pbd/compose.h"
23
24 #include "ardour/audio_buffer.h"
25 #include "ardour/buffer_set.h"
26 #include "ardour/dB.h"
27 #include "ardour/meter.h"
28 #include "ardour/midi_buffer.h"
29 #include "ardour/session.h"
30 #include "ardour/rc_configuration.h"
31 #include "ardour/runtime_functions.h"
32
33 using namespace std;
34
35 using namespace ARDOUR;
36
37 PBD::Signal0<void> Metering::Meter;
38
39 PeakMeter::PeakMeter (Session& s, const std::string& name)
40     : Processor (s, string_compose ("meter-%1", name))
41 {
42         Kmeterdsp::init(s.nominal_frame_rate());
43         Iec1ppmdsp::init(s.nominal_frame_rate());
44         Iec2ppmdsp::init(s.nominal_frame_rate());
45         Vumeterdsp::init(s.nominal_frame_rate());
46 }
47
48 PeakMeter::~PeakMeter ()
49 {
50         while (_kmeter.size() > 0) {
51                 delete (_kmeter.back());
52                 delete (_iec1meter.back());
53                 delete (_iec2meter.back());
54                 delete (_vumeter.back());
55                 _kmeter.pop_back();
56                 _iec1meter.pop_back();
57                 _iec2meter.pop_back();
58                 _vumeter.pop_back();
59         }
60 }
61
62
63 /** Get peaks from @a bufs
64  * Input acceptance is lenient - the first n buffers from @a bufs will
65  * be metered, where n was set by the last call to setup(), excess meters will
66  * be set to 0.
67  *
68  * (runs in jack realtime context)
69  */
70 void
71 PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
72 {
73         if (!_active && !_pending_active) {
74                 return;
75         }
76
77         // cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
78
79         const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
80         const uint32_t n_midi  = min (current_meters.n_midi(), bufs.count().n_midi());
81
82         uint32_t n = 0;
83
84         // Meter MIDI in to the first n_midi peaks
85         for (uint32_t i = 0; i < n_midi; ++i, ++n) {
86                 float val = 0.0f;
87                 MidiBuffer& buf (bufs.get_midi(i));
88                 
89                 for (MidiBuffer::iterator e = buf.begin(); e != buf.end(); ++e) {
90                         const Evoral::MIDIEvent<framepos_t> ev(*e, false);
91                         if (ev.is_note_on()) {
92                                 const float this_vel = ev.buffer()[2] / 127.0;
93                                 if (this_vel > val) {
94                                         val = this_vel;
95                                 }
96                         } else {
97                                 val += 1.0 / bufs.get_midi(n).capacity();
98                                 if (val > 1.0) {
99                                         val = 1.0;
100                                 }
101                         }
102                 }
103                 _peak_signal[n] = max (val, _peak_signal[n]);
104         }
105
106         // Meter audio in to the rest of the peaks
107         for (uint32_t i = 0; i < n_audio; ++i, ++n) {
108                 _peak_signal[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_signal[n]);
109                 if (_meter_type & (MeterKrms | MeterK20 | MeterK14)) {
110                         _kmeter[i]->process(bufs.get_audio(i).data(), nframes);
111                 }
112                 if (_meter_type & (MeterIEC1DIN | MeterIEC1NOR)) {
113                         _iec1meter[i]->process(bufs.get_audio(i).data(), nframes);
114                 }
115                 if (_meter_type & (MeterIEC2BBC | MeterIEC2EBU)) {
116                         _iec2meter[i]->process(bufs.get_audio(i).data(), nframes);
117                 }
118                 if (_meter_type & MeterVU) {
119                         _vumeter[i]->process(bufs.get_audio(i).data(), nframes);
120                 }
121         }
122
123         // Zero any excess peaks
124         for (uint32_t i = n; i < _peak_signal.size(); ++i) {
125                 _peak_signal[i] = 0.0f;
126         }
127
128         _active = _pending_active;
129 }
130
131 void
132 PeakMeter::reset ()
133 {
134         for (size_t i = 0; i < _peak_signal.size(); ++i) {
135                 _peak_signal[i] = 0.0f;
136         }
137
138         for (size_t n = 0; n < _kmeter.size(); ++n) {
139                 _kmeter[n]->reset();
140                 _iec1meter[n]->reset();
141                 _iec2meter[n]->reset();
142                 _vumeter[n]->reset();
143         }
144 }
145
146 void
147 PeakMeter::reset_max ()
148 {
149         for (size_t i = 0; i < _max_peak_power.size(); ++i) {
150                 _max_peak_power[i] = -INFINITY;
151                 _max_peak_signal[i] = 0;
152         }
153
154         const size_t n_midi  = min (_peak_signal.size(), (size_t) current_meters.n_midi());
155
156         for (size_t n = 0; n < _peak_signal.size(); ++n) {
157                 if (n < n_midi) {
158                         _visible_peak_power[n] = 0;
159                 } else {
160                         _visible_peak_power[n] = -INFINITY;
161                 }
162         }
163 }
164
165 bool
166 PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
167 {
168         out = in;
169         return true;
170 }
171
172 bool
173 PeakMeter::configure_io (ChanCount in, ChanCount out)
174 {
175         if (out != in) { // always 1:1
176                 return false;
177         }
178
179         current_meters = in;
180
181         reset_max_channels (in);
182
183         return Processor::configure_io (in, out);
184 }
185
186 void
187 PeakMeter::reflect_inputs (const ChanCount& in)
188 {
189         current_meters = in;
190
191         const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
192         const size_t n_midi  = min (_peak_signal.size(), (size_t) current_meters.n_midi());
193
194         for (size_t n = 0; n < limit; ++n) {
195                 if (n < n_midi) {
196                         _visible_peak_power[n] = 0;
197                 } else {
198                         _visible_peak_power[n] = -INFINITY;
199                 }
200         }
201
202         reset();
203         reset_max();
204
205         ConfigurationChanged (in, in); /* EMIT SIGNAL */
206 }
207
208 void
209 PeakMeter::reset_max_channels (const ChanCount& chn)
210 {
211         uint32_t const limit = chn.n_total();
212         const size_t n_audio = chn.n_audio();
213
214         while (_peak_signal.size() > limit) {
215                 _peak_signal.pop_back();
216                 _visible_peak_power.pop_back();
217                 _max_peak_signal.pop_back();
218                 _max_peak_power.pop_back();
219         }
220
221         while (_peak_signal.size() < limit) {
222                 _peak_signal.push_back(0);
223                 _visible_peak_power.push_back(minus_infinity());
224                 _max_peak_signal.push_back(0);
225                 _max_peak_power.push_back(minus_infinity());
226         }
227
228         assert(_peak_signal.size() == limit);
229         assert(_visible_peak_power.size() == limit);
230         assert(_max_peak_signal.size() == limit);
231         assert(_max_peak_power.size() == limit);
232
233         /* alloc/free other audio-only meter types. */
234         while (_kmeter.size() > n_audio) {
235                 delete (_kmeter.back());
236                 delete (_iec1meter.back());
237                 delete (_iec2meter.back());
238                 delete (_vumeter.back());
239                 _kmeter.pop_back();
240                 _iec1meter.pop_back();
241                 _iec2meter.pop_back();
242                 _vumeter.pop_back();
243         }
244         while (_kmeter.size() < n_audio) {
245                 _kmeter.push_back(new Kmeterdsp());
246                 _iec1meter.push_back(new Iec1ppmdsp());
247                 _iec2meter.push_back(new Iec2ppmdsp());
248                 _vumeter.push_back(new Vumeterdsp());
249         }
250         assert(_kmeter.size() == n_audio);
251         assert(_iec1meter.size() == n_audio);
252         assert(_iec2meter.size() == n_audio);
253         assert(_vumeter.size() == n_audio);
254
255         reset();
256         reset_max();
257 }
258
259 /** To be driven by the Meter signal from IO.
260  * Caller MUST hold its own processor_lock to prevent reconfiguration
261  * of meter size during this call.
262  */
263
264 void
265 PeakMeter::meter ()
266 {
267         if (!_active) {
268                 return;
269         }
270
271         assert(_visible_peak_power.size() == _peak_signal.size());
272
273         const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
274         const size_t n_midi  = min (_peak_signal.size(), (size_t) current_meters.n_midi());
275
276         for (size_t n = 0; n < limit; ++n) {
277
278                 /* grab peak since last read */
279
280                 float new_peak = _peak_signal[n]; /* XXX we should use atomic exchange from here ... */
281                 _peak_signal[n] = 0;              /* ... to here */
282
283                 if (n < n_midi) {
284                         _max_peak_power[n] = -INFINITY; // std::max (new_peak, _max_peak_power[n]); // XXX
285                         _max_peak_signal[n] = 0;
286                         if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
287                                 ;
288                         } else {
289                                 /* empirical WRT to falloff times , 0.01f ^= 100 Hz update rate */
290                                 new_peak = _visible_peak_power[n] - sqrt(_visible_peak_power[n] * Config->get_meter_falloff() * 0.01f * 0.0002f);
291                                 if (new_peak < (1.0 / 512.0)) new_peak = 0;
292                         }
293                         _visible_peak_power[n] = new_peak;
294                         continue;
295                 }
296
297                 /* AUDIO */
298
299                 /* compute new visible value using falloff */
300
301                 _max_peak_signal[n] = std::max(new_peak, _max_peak_signal[n]);
302
303                 if (new_peak > 0.0) {
304                         new_peak = accurate_coefficient_to_dB (new_peak);
305                 } else {
306                         new_peak = minus_infinity();
307                 }
308
309                 /* update max peak */
310
311                 _max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
312
313                 if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
314                         _visible_peak_power[n] = new_peak;
315                 } else {
316                         // do falloff
317                         new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
318                         _visible_peak_power[n] = std::max (new_peak, -INFINITY);
319                 }
320         }
321 }
322
323 float
324 PeakMeter::meter_level(uint32_t n, MeterType type) {
325         switch (type) {
326                 case MeterKrms:
327                 case MeterK20:
328                 case MeterK14:
329                         {
330                                 const uint32_t n_midi = current_meters.n_midi();
331                                 if ((n - n_midi) < _kmeter.size() && (n - n_midi) >= 0) {
332                                         return accurate_coefficient_to_dB (_kmeter[n - n_midi]->read());
333                                 }
334                         }
335                         break;
336                 case MeterIEC1DIN:
337                 case MeterIEC1NOR:
338                         {
339                                 const uint32_t n_midi = current_meters.n_midi();
340                                 if ((n - n_midi) < _iec1meter.size() && (n - n_midi) >= 0) {
341                                         return accurate_coefficient_to_dB (_iec1meter[n - n_midi]->read());
342                                 }
343                         }
344                         break;
345                 case MeterIEC2BBC:
346                 case MeterIEC2EBU:
347                         {
348                                 const uint32_t n_midi = current_meters.n_midi();
349                                 if ((n - n_midi) < _iec2meter.size() && (n - n_midi) >= 0) {
350                                         return accurate_coefficient_to_dB (_iec2meter[n - n_midi]->read());
351                                 }
352                         }
353                         break;
354                 case MeterVU:
355                         {
356                                 const uint32_t n_midi = current_meters.n_midi();
357                                 if ((n - n_midi) < _vumeter.size() && (n - n_midi) >= 0) {
358                                         return accurate_coefficient_to_dB (_vumeter[n - n_midi]->read());
359                                 }
360                         }
361                         break;
362                 case MeterPeak:
363                         return peak_power(n);
364                 case MeterMaxSignal:
365                         if (n < _max_peak_signal.size()) {
366                                 return _max_peak_signal[n];
367                         }
368                         break;
369                 default:
370                 case MeterMaxPeak:
371                         if (n < _max_peak_power.size()) {
372                                 return _max_peak_power[n];
373                         }
374                         break;
375         }
376         return minus_infinity();
377 }
378
379 void
380 PeakMeter::set_type(MeterType t)
381 {
382         if (t == _meter_type) {
383                 return;
384         }
385
386         _meter_type = t;
387
388         if (t & (MeterKrms | MeterK20 | MeterK14)) {
389                 const size_t n_audio = current_meters.n_audio();
390                 for (size_t n = 0; n < n_audio; ++n) {
391                         _kmeter[n]->reset();
392                 }
393         }
394         if (t & (MeterIEC1DIN | MeterIEC1NOR)) {
395                 const size_t n_audio = current_meters.n_audio();
396                 for (size_t n = 0; n < n_audio; ++n) {
397                         _iec1meter[n]->reset();
398                 }
399         }
400         if (t & (MeterIEC2BBC | MeterIEC2EBU)) {
401                 const size_t n_audio = current_meters.n_audio();
402                 for (size_t n = 0; n < n_audio; ++n) {
403                         _iec2meter[n]->reset();
404                 }
405         }
406         if (t & MeterVU) {
407                 const size_t n_audio = current_meters.n_audio();
408                 for (size_t n = 0; n < n_audio; ++n) {
409                         _vumeter[n]->reset();
410                 }
411         }
412
413         TypeChanged(t);
414 }
415
416 XMLNode&
417 PeakMeter::state (bool full_state)
418 {
419         XMLNode& node (Processor::state (full_state));
420         node.add_property("type", "meter");
421         return node;
422 }