NOOP, re-indent.
authorRobin Gareus <robin@gareus.org>
Tue, 10 Mar 2015 21:12:35 +0000 (22:12 +0100)
committerRobin Gareus <robin@gareus.org>
Tue, 10 Mar 2015 21:15:44 +0000 (22:15 +0100)
libs/ardour/interpolation.cc

index be4967b521ab151fb41eadf4a69e878b7a36f584..3b21fe171819453ab463ef97e92256c25a3ff27d 100644 (file)
@@ -48,7 +48,7 @@ LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input
                }
 
                if (input && output) {
-               // Linearly interpolate into the output buffer
+                       // Linearly interpolate into the output buffer
                        output[outsample] =
                                input[i] * (1.0f - fractional_phase_part) +
                                input[i+1] * fractional_phase_part;
@@ -64,94 +64,94 @@ LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input
 framecnt_t
 CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
 {
-    // index in the input buffers
-    framecnt_t   i = 0;
+       // index in the input buffers
+       framecnt_t   i = 0;
 
-    double acceleration;
-    double distance = 0.0;
+       double acceleration;
+       double distance = 0.0;
 
-    if (_speed != _target_speed) {
-        acceleration = _target_speed - _speed;
-    } else {
-           acceleration = 0.0;
-    }
+       if (_speed != _target_speed) {
+               acceleration = _target_speed - _speed;
+       } else {
+               acceleration = 0.0;
+       }
 
-    distance = phase[channel];
+       distance = phase[channel];
 
-    if (nframes < 3) {
-           /* no interpolation possible */
+       if (nframes < 3) {
+               /* no interpolation possible */
 
-           if (input && output) {
-                   for (i = 0; i < nframes; ++i) {
-                           output[i] = input[i];
-                   }
-           }
+               if (input && output) {
+                       for (i = 0; i < nframes; ++i) {
+                               output[i] = input[i];
+                       }
+               }
 
-           return nframes;
-    }
+               return nframes;
+       }
 
-    /* keep this condition out of the inner loop */
+       /* keep this condition out of the inner loop */
 
-    if (input && output) {
+       if (input && output) {
 
-           Sample inm1;
+               Sample inm1;
 
-           if (floor (distance) == 0.0) {
-                   /* best guess for the fake point we have to add to be able to interpolate at i == 0:
-                      .... maintain slope of first actual segment ...
-                   */
-                   inm1 = input[i] - (input[i+1] - input[i]);
-           } else {
-                   inm1 = input[i-1];
-           }
+               if (floor (distance) == 0.0) {
+                       /* best guess for the fake point we have to add to be able to interpolate at i == 0:
+                          .... maintain slope of first actual segment ...
+                          */
+                       inm1 = input[i] - (input[i+1] - input[i]);
+               } else {
+                       inm1 = input[i-1];
+               }
 
-           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+               for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
 
-                   float f = floor (distance);
-                   float fractional_phase_part = distance - f;
+                       float f = floor (distance);
+                       float fractional_phase_part = distance - f;
 
-                   /* get the index into the input we should start with */
+                       /* get the index into the input we should start with */
 
-                   i = lrintf (f);
+                       i = lrintf (f);
 
-                   /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory
-                      it should always be < 1.0. If it ever >= 1.0, then bump the index we use
-                      and back it off. This is the point where we "skip" an entire sample in the
-                      input, because the phase part has accumulated so much error that we should
-                      really be closer to the next sample. or something like that ...
-                   */
+                       /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory
+                          it should always be < 1.0. If it ever >= 1.0, then bump the index we use
+                          and back it off. This is the point where we "skip" an entire sample in the
+                          input, because the phase part has accumulated so much error that we should
+                          really be closer to the next sample. or something like that ...
+                          */
 
-                   if (fractional_phase_part >= 1.0) {
-                           fractional_phase_part -= 1.0;
-                           ++i;
-                   }
+                       if (fractional_phase_part >= 1.0) {
+                               fractional_phase_part -= 1.0;
+                               ++i;
+                       }
 
-                   // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
-                   // optimization to take care of the rest
-                   // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)
+                       // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
+                       // optimization to take care of the rest
+                       // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)
 
-                   output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
-                                                         fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
-                                                               fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));
+                       output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
+                                       fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
+                                               fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));
 
-                   distance += _speed + acceleration;
-                   inm1 = input[i];
-           }
+                       distance += _speed + acceleration;
+                       inm1 = input[i];
+               }
 
-           i = floor(distance);
-           phase[channel] = distance - floor(distance);
+               i = floor(distance);
+               phase[channel] = distance - floor(distance);
 
-    } else {
-           /* used to calculate play-distance with acceleration (silent roll)
-            * (use same algorithm as real playback for identical rounding/floor'ing)
-            */
-           for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
-                   distance += _speed + acceleration;
-           }
-           i = floor(distance);
-    }
+       } else {
+               /* used to calculate play-distance with acceleration (silent roll)
+                * (use same algorithm as real playback for identical rounding/floor'ing)
+                */
+               for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
+                       distance += _speed + acceleration;
+               }
+               i = floor(distance);
+       }
 
-    return i;
+       return i;
 }
 
 framecnt_t